Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 7.37P
The boundary layer associated with parallel flow over an isothermal plate may be tripped at any x-location by using a fine wire that is stretched across the width of the plate. Determine the value of the critical Reynolds number
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please help me with the correct solution .
The answer must be correct.
Air at atmospheric pressure and 25oC is heated in a tube with an ID of 25 mm. The tube wall is maintained at a temperature of 200oC. What length of tube is required to achieve an outlet air temperature of 120oC if the air flow is 10 Nm3/hr?
Fully developed conditions are known to exist for water flowing through a 50-mm ID tube at 0.02 kg/s and 27°C. What is the maximum velocity of the water in the tube? What is the pressure gradient associated with the flow?
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- no previous attempt pleasearrow_forwardFor laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because (select all that are correct) The thickness of the heated region near the plate is increasing. The velocities near the plate are decreasing. The fluid temperatures near the plate are increasing.arrow_forwardHandwritten solution, Please complete all the parts its easyarrow_forward
- Compute the Nu numbers for air at 40°C flowing with 4 m/s speed over the following: 1) A Copper sphere of 5 cm in diameter with 80°C isothermal surface temperature 2) A circular Aluminum pipe of 6 cm in diameter with 80°C isothermal surface temperature 3) A bank of 20x20 5-mm diameter tubes arranged in-line with center-to-center distance of 20 mm. Each tube is assumed to have isothermal temperature of 80°C. Please show detailed calculations.arrow_forwardPlease no written by hand solutionsarrow_forwardProblem#4* - Design the optimal location of triggering flow transition to maximize the cooling efficiency of a flat plate. The boundary layer associated with parallel flow over an isothermal plate may be "tripped" at any x- location by using a fine wire that is stretched across the width of the plate. Determine the value of the critical Reynolds number Rex,c, that is associated with the optimal location of the trip wire from the leading edge that will result in maximum heat transfer from a warm plate to a cooler fluid. Assume the Nusselt number correlations provided in the text for laminar and turbulent flows apply in the laminar and turbulent regions (mixing laminar and turbulent flows, CASE C in your handout notes), respectively.arrow_forward
- A plane-inclined pad thrust bearing is 160mm wide and 40mm long in the direction of sliding. The sliding velocity is 6 m/s and the bearing is supported so that the inlet film thickness is always three times the outlet film thickness. A load 18 kN is carried by the bearing and Tellus 37 oil is supplied at an inlet temperature of 40̊ C. Assuming that 80% of the heat generated in the bearing is carried away by the oil, describe the operating characteristics of the bearing (Pm, Q, F, tm,). Density is 875 kg/m3 and specific heat is Cp=1.880 J/g-K.arrow_forwardPlease show all steps not Ai generated I need to understand the processarrow_forwardA 0.5-m diameter uninsulated pipe transports high-temperature steam. Its surface temperature is 150°C and it is exposed to air at -10°C. The air moves in cross flow over the pipe with a velocity of 5 m/s. To compute for the Nusselt number of the air flow, what is the exact value of the temperature in °C on which the air properties should be based?arrow_forward
- Consider two cases involving parallel flow of dry air at V = 5 m/s, T = 45°C, and atmospheric pressure over an isothermal plate at T = 20°C. In the first case, Rex, = 5 x 105, while in the second case the flow is tripped to a turbulent state at x = 0 m. At what x-location, in m, are the thermal boundary layer thicknesses of the two cases equal? What are the local heat fluxes, in W/m², at this location for the two cases? x = d'am = qturb = Mc i m W/m² W/m²arrow_forwardcan you please work all these parts please pleasearrow_forward11 An airstream of speed 160 m/s and temperature 3000 K travels on the inside of a 30 cm I.D. steel tube whose wall thickness is 2.5 mm. On the outside of the tube, water coolant flows coaxially in an annular space 6.1 mm thick. The coolant velocity is 10 m/s, and it has a local temperature of 15°C. Both flows are approximately fully developed. The pressure of the airstream is around 140 kPa. Estimate the maximum wall temperature of the tube.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License