Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.143P
To determine
The surface temperature of the droplet at the ambient air temperature
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A plastics plant manufactures larges pieces of plastic by continuously extruding thin sheets.As the sheets flow out of the extruder, they are cooled via forced convection and radiation.The plastic sheets are 1 mm thick, 1 m wide, and leave the extruder at a rate of 9 m/min.A fan blows air over the top and bottom surface of the sheet during the first meter after thesheet leaves the extruder. The fan accelerates the air to 3 m/s and the air is known to be at27°C at the fan outlet. At the exit of the extruder, the plastic is at 90°C. The plastic isestimated to have an emissivity of ? = 0.9 and the general surroundings are at 20°C.
A) Determine the rate of heat transfer via convection and radiation from the 1-m-longsection of the plastic sheet that is being force cooled. take the surface temperature to be 90°C overthe entire section of interest.
B) The density-specific heat product of the plastic is ?? = 1920 kJ m3– K⁄ . What is thetemperature of the plastic at the end of the cooling…
Calculate the capillary effect in mm in a glass tube of 2mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and
mercury at 25°C in contact with air is 0.0755 and 0.52N/m respectively. The angle of contact for water is 0° and 130° for mercury. Take the density of water 1000 kg/m³, specific gravity of mercury
is 13.6.
(ENTER ONLY THE VALUES BY REFERRING THE UNITS GIVEN)
The capillary effect of water in mm is equal to=
The capillary effect of mercury in mm is equal to=
How does an increase in gas temperature affect pressure drop in a haghouse, assuming the mass flow rate of particles and the molar flow rate of gas are constant?
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An open tank, 6 mm in diameter, contains 1 mm deep layer of benzene (Mol wt = 78) at its bottom. The vapour pressure of benzene in the tank is 13.15 kN/m2 and its diffusion takes place through a stagnant air film 2.5 mm thick, At the operating temperature of 20°C, the diffusivity of benzene in the tank is 8.0 x 10-6 m2/s. If the benzene has a density of 880 kg/m³, calculate the time taken for the entire benzene to evaporate. Take atmospheric pressure as 101.3 kN/m² and neglect any resistance to diffusion of benzene beyond the air film. %3Darrow_forwardCalculate the capillary effect in mm in a glass tube of 4mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0735 and 0.59N/m respectively. The angle of contact for water is 0° and 130° for mercury . Take the density of water 1000 kg/m³ , specific gravity of mercury is 13.6.arrow_forwardCalculate the time taken for a 7 um radius cloud droplet to grow via condensation into a 3500 um rain droplet. Assume a super-saturation of 1.55%, a water vapour density of 3 g m-3, and a water vapour diffusion coefficient in dry air of D=24 x10-6 m2 S -1 PLEASE SHOW CALCULATIONarrow_forward
- Water at 45.0oC flows over a large plate at a velocity of 30.0 cm/s. The plate is 1.0 m long (in the flow direction), and its surface is maintained at a uniform temperature of 5.0oC. Calculate the steady rate of heat transfer per unit width of the plate. Properties The properties of air at 1 atm and the film temperature of (Ts+T∞)/2 = (5+45)/2 = 25°C are: ρ = 996.6 kg/m3, k = 0.610 W/m.oC, μ = 0.854x10-3 kg/m.s, Pr = 5.85arrow_forwardI need the answer soon 2arrow_forwardA 0.10-mm-diameter glass tube is inserted into water at 100°C in a tub to observe capillary rise phenomenon. Determine the capillary rise of water in the tube. (a) What would happen if water is replaced with gasoline in tube? (b) Can you calculate the capillary rise if the diameter of tube at one end is 0.3mm and on the other end it is 0.10mmarrow_forward
- Solve it clearly pleasearrow_forwardNutrient media is flowing at a rate of 1.5 L min in a tube that is 5 mm in diameter. The walls of the tube are covered with antibody-producing cells, and these cells are anchored to the tube wall by their interaction with a special coating material that was applied to the surface of the tube. If one of these cells has a surface area of 500 um², what is the amount of force that each cell must resist as a result of the flow of this fluid in the tube? Assume the viscosity of the nutrient media is 1.2 cP=0.0012 Pa sec.arrow_forwardheat transferarrow_forward
- A velocity of the cylindrical particles of diameter and length are 0.3 mm. It is drop in the air tube .The density of the particle is 1200 kg/m³. The initial velocity of the particle is zero. Air conditions are 28 °C and 1 atm. The viscosity of air is 1.8 x 105 kg/m-s, and superficial velocity of air is 11 m/s. The Reynolds number range is between 1100 and 900. (a) Derive an equation of the velocity of the particles with neglect wall effects. (b) How long of distance if the velocity become steady state filling?arrow_forward55°C methanol flows over a 4m long 2m width flat plate with temperature of 25°C. The velocity of methanol is 1.08 km/h. Determine the total drag force and the rate of heat transfer from the entire plate. What is the value of x_ and what does it mean?arrow_forwardPlease help me with the correct solution . The answer must be correct.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License