Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.138P
(a)
To determine
Required electrical power and the evaporation rate per unit length.
(b)
To determine
Calculate and plot required electrical power and evaporation rate per unit length of the cylinder as function of dry air velocity 5 = V = 20 m/s and paper temperatures of 65, 70 and 75°C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please answer asap with correct answer
A manufacturing plant produces an efluent as a waste product. As part of a waste heat
recovery system, they want to use this for internal heating and cooling. The effluent is
flown through a system where its temperature remains at 303.15 K. A 0.06-m diameter
pipe carrying hot water and 0.04-m diameter pipe carrying cold air is passed through
this effluent chamber. It can be assumed that the surface temperature of these air and
water pipes are same as the effluent temperature. Water comes in at 328.15 K and exits
at 308.15 K. The air comes in at 268.15 K and exits at 298.15 K. The mass flow rate of
water and air is respectively, 1 kg/s and 0.01 kg/s. Determine the length of the water and
air pipes in the system. Convert all calculations to C.
Air at 25°C flows at 50 × 10-6 kg/s within 100-mm-long channels used to cool a high thermal conductivity metal mold. Assume the
flow is hydrodynamically and thermally fully developed.
Air, Tmi = 25°C
Mold, T=50°C-
Case A
Case B
(a) Determine the rate of heat transferred, in W, to the air for a circular channel (D =
(case A).
10 mm) when the mold temperature is 50°C
(b) Consider air flowing under the same conditions as in case A, except now the channel is segmented into six smaller triangular
sections. The flow area of case A is equal to the total flow area of case B. Determine the rate of heat transferred, in W, to the air for the
segmented channel.
(c) Determine the pressure drops for cases A and B, both in Pa.
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5.7 The average Reynolds number for air passing in turbulent flow over a 2-m-long, flat plate is . Under these conditions, the average Nusselt number was found to be equal to 4150. Determine the average heat transfer coefficient for an oil having thermal properties similar to those in Appendix 2, Table 18, at at the same Reynolds number and flowing over the same plate.arrow_forward7.43 Liquid sodium is to be heated from 500 K to 600 K by passing it at a flow rate of 5.0 kg/s through a 5-cmID tube whose surface is maintained at 620 K. What length of tube is required?arrow_forwardThe heat transfer coefficient for a gas flowing over a thin float plate 3-m long and 0.3-m wide varies with distance from the leading edge according to hc(x)=10x1/4Wm2K If the plate temperature is 170C and the gas temperature is 30C, calculate (a) the average heat transfer coefficient, (b) the rate of heat transfer between the plate and the gas, and (c) the local heat flux 2 m from the leading edge. Problem 1.18arrow_forward
- A mercury-in-glass thermometer at 40C(OD=1cm) is inserted through a duct wall into a 3 m/s airstream at 66C. This can be modelled as a cylinder in cross-flow, as shown in the figure. Estimate the heat transfer coefficient between the air and the thermometer.arrow_forwardIt is aimed to produce frozen potatoes in a newly established business. The entry temperature of the cleaned potato to the system is -16 °C, and the desired temperature to reach 10 °C. For this purpose, a refrigerant at -25 °C will be used. In the freezing process, potatoes of certain sizes are placed in the ice cream basket, the basket is immersed in the tank containing the refrigerant and kept during freezing. A cooling system is designed around the tank and 1M Joule per hour removes heat from the tank to keep the temperature of the tank constant at -25 °C. It is desirable to produce potatoes of different shapes. These shapes are spheres with a diameter of 20 mm, a cube with dimensions of 16x16x16 mm and a rectangular prism with a diameter of 12x12x25 mm. In such a process,a. What should be used as refrigerant?b. What is the daily production capacity for each product?c. What would you recommend to increase production capacity?arrow_forwardYou have a 2 mm thick layer of water on the floor of a room. The water vaporizes and diffuses through a stagnant film of air, estimated to be 2.5 mm thick, on the surface of the water. Under the evaporation condition, consider as an approximation that the temperature of the water is essentially equal to its dry bulb temperature, 28 ° C. Calculate the time required for the water layer to completely disappear, for thecase the floor is porous and the water also penetrates the floor at a constant rate of 0.1kg / (m2.h).Calculate the vapor pressure of water using the Antoine equation below. The diffusivity of water vapor in air is 0.2201 cm2 / s at 1 atm and 0 ° C. The vapor pressure, P ° (in bar), of the water is given by: ln (P °) = 13.8573 - 5160.2 / T, where T is the temperature in K.arrow_forward
- 2. Calculate the free convection heat transfer coefficient for a plate 6 ft high and 8 ft wide at 120 °F that is exposed to nitrogen at 60 °F. (see attached) 3. Constant Flux Application. Air at 1 atm and 300 °C is cooled as it flows at a velocity of 5.0 m/s through a tube with a diameter of 2.54 cm. Calculate the heat transfer coefficient if a constant heat flux condition is maintained at the wall and the wall temperature is 20 °C above the temperature along the entire length of the tube. (See attached)arrow_forwardMerrill et al. (1965) in a series of classic experiments studied the flow of blood in capillary tubes of various diameters. The blood had a hematocrit of 39.3 and the temperature was 20°C. They measured the pressure drop as a function of the flow rate for five tube diameters ranging from 288 to 850 μm. When they expressed the measured pressure drops in terms of the wall shear stress, and the volumetric flow rates in terms of the reduced average velocity, all of the data for the various tube sizes formed, within the experimental accuracy, a single line as predicted by the Rabinowitsch equation expressed in terms of reduced average velocity. From their results they provide the following values of the Casson parameters at 20°C: τy = 0.0289 dynes cm−2 and s = 0.229 (dynes s cm−2)1/2. Using these values for τy and s, show that the equation below for reduced average velocity provides an excellent fit to their data summarized in the following table. (Wall shear stress) τw , dynes cm-2…arrow_forwardAir at a pressure of 101.3 k Pa and 288.8 K enters inside a tube having an inside diameter of 12.7 mm and a length of 1.52 m with a velocity of 24.4 m/s. Condensing steam on the outside of the tube maintains the inside wall temperature at 372.1 K . Calculate the convection coefficient of the air. ( Note: This solution is trial and error. First, assume an outlet temperature of the air. )arrow_forward
- necessary diagrams. "ENGINEERING LETTERING" 1. Engine oil at 80°C flows over a 6-m-long flat plate whose temperature is 30°C with a velocity of 3 m/s. The properties of oil at its film temperatures are, p=867 kg/m³, v=123 x 10 -6 m²/s, k=0.141 W/(m-K), Cp=1.990 kJ/(kg- K). Determine the average Nusselt Number.arrow_forwardPhotovoltaic (PV) cells convert solar energy into electrical power. However, part of the absorbed solar Irradiation will be converted into heat which results in reduced PV efficiency. To achieve the best possible PV performance, the surface operating temperature of the PV cell should be kept as low as possible using the best way of cooling. Passive cooling is achieved by allowing airstream to flow over the cell. A PV cell with length 2m and width 1m was considered in an experiment to determine the PV cell cooling rate. In this experiment, the surrounding air was at 34°C with airstream of approximately 2 m/s. Thermocouples were attached to the PV cell surface which showed an average temperature of 70°C. In this situation, the cooling rate was found to be lower than required. Propose a way to improve this rate and analyze the percentage improvement in the PV cell cooling rate.arrow_forwardHot outside air and recirculated air from the inside of the car are mixed, pass through a filter, and are then blown by a fan through the evaporator coil where the air is cooled as the fluid inside the refrigeration system evaporates. The cooled air is then supplied to the car interior to maintain the inside temperature at the desired level, 20⁰ The passenger compartment of the car has dimensions 2m long, 1.5m wide, and 1m high. The overall heat transfer coefficients, radial and additional heat fluxes are presented in below. Place Windows Overall Heat Transfer Coefficient 3.66 (W/m^2)/K 6.66 (W/m^2)/K No need to calculate No need to calculate Heat Flux TO BE CALCULATED TO BE CALCULATED Heat Transfer Rate Car Body Solar Irradiation Thermal loads per person The transmissivity of window glass to solar radiation is 0.76 and the absorptivity of the car interior is 0.3. The window glass area is 40% of the total compartment surface There is a maximum of two people in the car at any given…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license