(a)
Interpretation:
In aqueous solution, propanamide exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
(b)
Interpretation:
In aqueous solution, 1-propanamine exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amines are a class of organic compounds. They are derivatives of ammonia. Similar to the nitrogen atom in ammonia, the amine nitrogen also has a lone pair of electrons on it. This means that amines can act as proton acceptors. When an amine is added to water a proton is transferred to the nitrogen atom. The resulting solution is a basic solution. This contains ammonium ions and hydroxide ions.
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
(c)
Interpretation:
In aqueous solution, the given compound exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amines are a class of organic compounds. They are derivatives of ammonia. Similar to the nitrogen atom in ammonia, the amine nitrogen also has a lone pair of electrons on it. This means that amines can act as proton acceptors. When an amine is added to water a proton is transferred to the nitrogen atom. The resulting solution is a basic solution. This contains ammonium ions and hydroxide ions.
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
(d)
Interpretation:
In aqueous solution, the given compound exhibit basic behavior or not has to be indicated.
Concept Introduction:
Amines are a class of organic compounds. They are derivatives of ammonia. Similar to the nitrogen atom in ammonia, the amine nitrogen also has a lone pair of electrons on it. This means that amines can act as proton acceptors. When an amine is added to water a proton is transferred to the nitrogen atom. The resulting solution is a basic solution. This contains ammonium ions and hydroxide ions.
Amides have a carbonyl group bonded to the nitrogen atom. The carbonyl carbon atom pulls the lone pair of electrons present on the nitrogen strongly. Hence, the nitrogen atom cannot act as a proton acceptor. Amides are not basic in nature.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- How is Talu home quer in Org. Chemistry propose a 3-butanal prepared from ketone? complete reaction for this, (to start from the guignand Meagent. ②what pocubble products could be produced from the reaction of : CA₂ CH₂ CH₂ dil H.504 A CH3 1 OBCH₂OH Naz Cr₂ 07 12504 NazCD 4 CH3CH2 07 AzS04 H3C H3C CH3-C - C - Atz но но + H, CH3 07 > ⑦Colts C614501 + (215) 504 кон 4arrow_forwardRank the following compounds most to least acidic: a) О OH 요애 OH .OH flow flow О F F F F OH F b) Ha EN-Ha CI Ha F F CI Haarrow_forwarda) b) Provide arrows to show the mechanisms and then predict the products of the following acid base reaction. Use pKas to determine which way the reaction will favor (Hint: the lower pka acid will want to dissociate) Дон OH Ha OH NH2 c) H H-O-Harrow_forward
- MATERIALS. Differentiate between interstitial position and reticular position.arrow_forwardFor each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forwardDecide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forward
- Provide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forwardDraw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl Substitution will not occur at a significant rate. Explanation Check :☐ O-CH + Х Click and drag to start drawing a structure.arrow_forward
- Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning