Concept explainers
(a)
Interpretation:
Whether NAD+ is involved in (1) glycerol
Concept introduction:
Triacylglycerol mobilization is an ongoing process in which triacylglycerols that are stored in the adipose tissue are hydrolyzed. Fatty acids and glycerol are the products of triacylglycerol mobilization. The products are released into the bloodstream.
After entering the bloodstream, the glycerol travels to the kidneys or liver. The first stage of glycerol metabolism occurs in the liver or kidney. The first stage of glycerol metabolism is a two-step process. After the first stage, the remaining stages of glycerol metabolism are the same as glucose pathways. The overall equation for glycerol metabolism is as follows:
Fatty acids are molecules that are long hydrocarbon chain of
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as a β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this pathway.
Nicotinamide adenine dinucleotide is associated with the
(a)
Answer to Problem 14.47EP
NAD+ is involved in (3) both glycerol metabolism and fatty acid metabolism.
Explanation of Solution
The first stage of glycerol metabolism is a two-step process. In step 1, glycerol-3-phosphate is formed as the intermediate compound that further reacts to form dihydroxyacetone phosphate in step 2. The reaction for the conversion of glycerol is as follows:
Here, represents
In step 2 of glycerol metabolism, NAD+ oxidized glycerol-3-phosphate to dihydroxyacetone phosphate. Therefore, NAD+ is involved in glycerol metabolism.
The reaction in step 3 of a turn of the β-oxidation pathway is a dehydrogenation reaction in which two hydrogen atoms are removed from L-β-hydroxyacyl CoA. In this reaction, the β-hydroxy group is converted to a β-keto group. NAD+ is used as an oxidizing agent. This reaction is catalyzed by β-hydroxyacyl CoA dehydrogenase enzyme. The reaction for step 3 is as follows:
Therefore, NAD+ is involved in (3) both glycerol metabolism and fatty acid metabolism.
(b)
Interpretation:
Whether ADP is involved in (1) glycerol metabolism to dihydroxyacetone phosphate, (2) fatty acid metabolism to acetyl CoA, or (3) both glycerol metabolism and fatty acid metabolism has to be determined.
Concept introduction:
Triacylglycerol mobilization is an ongoing process in which triacylglycerols that are stored in the adipose tissue are hydrolyzed. Fatty acids and glycerol are the products of triacylglycerol mobilization. The products are released into the bloodstream.
After entering the bloodstream, the glycerol travels to the kidneys or liver. The first stage of glycerol metabolism occurs in the liver or kidney. The first stage of glycerol metabolism is a two-step process. After the first stage, the remaining stages of glycerol metabolism are the same as glucose pathways. The overall equation for glycerol metabolism is as follows:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as a β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this pathway.
Adenosine diphosphate (ADP) provides energy to carry out the metabolic processes in the living cells.
(b)
Answer to Problem 14.47EP
ADP is involved in (1) glycerol metabolism to dihydroxyacetone phosphate.
Explanation of Solution
The first stage of glycerol metabolism is a two-step process. In step 1, glycerol-3-phosphate is formed as the intermediate compound that further reacts to form dihydroxyacetone phosphate in step 2. The reaction for the conversion of glycerol is as follows:
Here, represents
In step 1 of glycerol metabolism, ATP is converted to ADP. Therefore, ADP is involved in glycerol metabolism.
(c)
Interpretation:
Whether kinase is involved in (1) glycerol metabolism to dihydroxyacetone phosphate, (2) fatty acid metabolism to acetyl CoA, or (3) both glycerol metabolism and fatty acid metabolism has to be determined.
Concept introduction:
Triacylglycerol mobilization is an ongoing process in which triacylglycerols that are stored in the adipose tissue are hydrolyzed. Fatty acids and glycerol are the products of triacylglycerol mobilization. The products are released into the bloodstream.
After entering the bloodstream, the glycerol travels to the kidneys or liver. The first stage of glycerol metabolism occurs in the liver or kidney. The first stage of glycerol metabolism is a two-step process. After the first stage, the remaining stages of glycerol metabolism are the same as glucose pathways. The overall equation for glycerol metabolism is as follows:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as a β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this pathway.
The transfer of a phosphoryl group
(c)
Answer to Problem 14.47EP
Kinase is involved in (1) glycerol metabolism to dihydroxyacetone phosphate.
Explanation of Solution
The first stage of glycerol metabolism is a two-step process. In step 1, glycerol-3-phosphate is formed as the intermediate compound that further reacts to form dihydroxyacetone phosphate in step 2. The reaction for the conversion of glycerol is as follows:
Here, represents
In step 1 of glycerol metabolism, glycerol kinase enzyme catalyzed the conversion of glycerol to glycerol-3-phosphate. Therefore, the kinase is involved in glycerol metabolism.
(d)
Interpretation:
Whether ketoacyl CoA is involved in (1) glycerol metabolism to dihydroxyacetone phosphate, (2) fatty acid metabolism to acetyl CoA, or (3) both glycerol metabolism and fatty acid metabolism has to be determined.
Concept introduction:
Triacylglycerol mobilization is an ongoing process in which triacylglycerols that are stored in the adipose tissue are hydrolyzed. Fatty acids and glycerol are the products of triacylglycerol mobilization. The products are released into the bloodstream.
After entering the bloodstream, the glycerol travels to the kidneys or liver. The first stage of glycerol metabolism occurs in the liver or kidney. The first stage of glycerol metabolism is a two-step process. After the first stage, the remaining stages of glycerol metabolism are the same as glucose pathways. The overall equation for glycerol metabolism is as follows:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as a β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this pathway.
Nicotinamide adenine dinucleotide is associated with the redox reactions in metabolism. Its reduced form is NADH and oxidized form is NAD+.
(d)
Answer to Problem 14.47EP
Ketoacyl CoA is involved in (2) fatty acid metabolism to acetyl CoA.
Explanation of Solution
The reaction in step 3 of a turn of the β-oxidation pathway is a dehydrogenation reaction in which two hydrogen atoms are removed from L-β-hydroxyacyl CoA. In this reaction, the β-hydroxy group is converted to a β-keto group. NAD+ is used as an oxidizing agent. This reaction is catalyzed by β-hydroxyacyl CoA dehydrogenase enzyme. The reaction for step 3 is as follows:
Therefore, ketoacyl CoA is involved in (2) fatty acid metabolism to acetyl CoA.
Want to see more full solutions like this?
Chapter 14 Solutions
Organic And Biological Chemistry
- The equilibrium voltage of the following cell has been measured at 0.522 V at 25 °C. Pt | H2, g❘ HClaq || AgClaq | Ags State the redox reactions present in this cell. Calculate the pH value of the electrolyte solution with KL, AgCl = 1.96 · 10-10 mol² / L². Assume that the concentrations of H+ and Clare equal.arrow_forwardHere are the energies (in kcal/mol) for staggered and eclipsed interactions for CH, CC, and CBr bonds eclipsed (0°) staggered (60°) bonds CH/CH 1.0 0.0 CH/CC 1.3 0.0 Br: CC/CC 3.0 0.9 Br CH/CBr 1.8 0.0 CC / CBr 3.3 1.0 CBr / CBr 3.7 1.2 a) I've drawn the Newman projection for one of the staggered conformations of the molecule above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered and the three eclipsed conformations (in order). CH₂ H3C. H' H Br b) Calculate the relative energies for each of the conformations and write them below each conformation.arrow_forward90. Draw the stereoisomers obtained from each of the following reactions: a. H₂ b. H₂ C. H₂ Pd/C Pd/C Pd/Carrow_forward
- 36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas phase shows all the lines, before they merge together, resulting from transitions to the first excited state from higher energy states. Line A has a wavelength of 434 nm. BA Increasing wavelength, λ (a) What are the upper and lower principal quantum numbers corresponding to the lines labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.arrow_forwardf) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? H₂C H₂C CH2 1.60Å ハ C. * CH₂ H₂C * C H₂ 120°arrow_forwardQuestion Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributorarrow_forward
- Can you show me or determine the longest carbon chain, which is octane? Potentially highlight it in different sections to show me, plz, or individually?arrow_forwardPLEASE ANSWER ALL PARTS!!arrow_forwardd) Determine the formal charge on the nitrogen atom in each of the structures. NH3 NH2 N C бобкат : N N H H Н H2N-OH A B C D E F Garrow_forward
- Lewis Structure, Hybridization & Molecular Geometry a) Draw the Lewis Structure of the molecules; Label the hybridization of each carbon atom; Predict the approximate molecular geometry around each carbon atom. CH3CHO CH3CN b) Draw the Lewis Structure of Nitromethane; Predict the approximate molecular geometry around the nitrogen atom. CH3NO2 c) Draw the Lewis Structure; Label the hybridization of the boron atom; Predict the approximate molecular geometry. BF3 BF4arrow_forwarda. The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 " is best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: HO + :Ö: Bicarbonate is crucial for the control of body pH (for example, blood pH 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forwardCalibri 11 + BIL NAME: Jaylena M A student is investigating the ctect of volume on pressure during a lab activity. The student uses the following volumes (mL). 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 33, 34, 35, 38, 40, 42, 44. 46, and 50. As the volume changed they measured the following pressures (atm) 11.0, 10.5, 10.0, 9.2. 8.5, 78, 75, 7.0, 6.8, 6.5, 6.0, 5.9, 5.5, 5.0, 4.8, 4.5, 4.2, 3.9, 3.8, 3.5, 3.3, 3.2, 3.0, 2.9. What is the independent variable? Volume Imla What is the dependent variable? Pressure Jatm Use the data and make a PROPER data table. Volume 1mL) Pressure latm 110arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning