![Organic And Biological Chemistry](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Whether or not cholesterol produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Cholesterol is an important component of cell membranes. It is used as the precursor for sex hormones, bile salts, and adrenal hormones. The biosynthesis of cholesterol occurs in the liver. It is a C27 molecule. The structure of cholesterol is as follows:
(b)
Interpretation:
Whether or not acetoacetyl CoA produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Ketogenesis is a
cleavage and hydrogenation to produce ketone bodies.
(c)
Interpretation:
Whether or not malonyl CoA produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as theβ-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid.
A cyclic process occurs in the enzyme fatty acid synthase. One turn of this cyclic process
constitutes four reactions. The various intermediates formed in the process are associated
with a carrier protein known as ACP.
(d)
Interpretation:
Whether or not pyruvate produced from acetyl CoA (1) can be produced in a one-step process, (2) can be produced in a multistep process, or (3) cannot be produced from acetyl CoA has to be indicated.
Concept introduction:
Fatty acids are molecules that are long hydrocarbon chain of carboxylic acid. They are building blocks of fat in humans and animals.
The fatty acids are broken down to provide energy. The breakdown of fatty acids is a three parts process. In the first part, the fatty acid is activated. In the second part, the transportation of fatty acid into the mitochondrial matrix is facilitated by a shuttle mechanism. In the third part, the fatty acid is readily oxidized, cycling through a series of four reactions. In these series of reactions, acyl CoA is degraded to acetyl CoA. This pathway is termed as the β-oxidation pathway. Acetyl CoA, FADH2, and NADH are produced in this reaction.
Pyruvate is the end product in the glycolysis. In the presence of oxygen, pyruvate is converted to acetyl CoA by the involvement of pyruvate dehydrogenase complex enzymes in the human body.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 14 Solutions
Organic And Biological Chemistry
- Don't used hand raitingarrow_forwardThe following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward
- Find a molecular formula. ( MW: 102 )arrow_forwardExperiment #8 Electrical conductivity & Electrolytes. Conductivity of solutions FLINN Scientific Scale RED LED Green LED LED Conductivity 0 OFF OFF 1 Dim OFF 2 medium OFF 3 Bright Dim Low or Nowe Low Medium High 4 Very Bright Medium nd very high AA Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ SE=Strong Electrolyte, FE = Fair Electrolyte CWE = Weak Electrolyte, NE= Noni Electrolyte, #Solutions 1 0.1 M NaCl 2/1x 102 M NaCl, 3/1X103 M Nall Can Prediction M Observed Conductivity Very bright red Bright red Dim red you help me understand how I'm supposed to find the predictions of the following solutions? I know this is an Ionic compound and that the more ions in a solution means it is able to carry a charge, right? AAAA Darrow_forward(SE EX 2) Prblsm 4-7: Can you please explain problems 4-7 and color code if needed for me. (step by step) detail explanationsarrow_forward
- (SE EX 2) Problems 8-11, can you please explain them to me in detail and color-code anything if necessary?arrow_forward(ME EX2) Problems 15-16 Could you please explain problems 15 through 16 to me in detail, step by step? Thank you so much! If necessary, please color-code them for me.arrow_forward1.)show any electrophilic aromatic substitution, identify the electriphile, nucleophile and transition statearrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399692/9781337399692_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084476/9781305084476_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080485/9781305080485_smallCoverImage.gif)