Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.130P
A gas turbine combustion chamber may be approximated as a long tube of 0.4-m diameter. The combustion gas is at a pressure and temperature of 1 atm and 1000°C, respectively, while the chamber surface temperature is 500°C. If the combustion gas contains
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Charge-coupled device (CCD) image sensors, which are common in modern digital cameras, respond differently to light sources with different spectral distributions. Daylight and incandescent light may be approximated as a blackbody at the effective surface temperatures of 5800 K and 2800 K, respectively. Determine the fraction of radiation emitted within the visible spectrum wavelengths, from 0.40 mm (violet) to 0.76 mm (red), for each of the lighting sources.
Question #9
A circular ceramic plate that can be modelled as a blackbody is being heated by an electrical
heater. The plate is 30cm in diameter and is situated in a surrounding ambient temperature
of 15°C where the natural convection heat transfer coefficient is 12W/m² K. The efficiency
of the electrical heater to transfer heat to the plate is 80%, the electric power is required
such that the heater needs to keep the surface temperature of the plate at 200°C.
Ambient 15°C Tsurr = 15°C
h = 12 W/m².K
Ceramic plate
-T₂ = 200°C
Welec
(A) Determine the heat emitted from the plate, as a blackbody.
(B) Determine the radiation incident on the plate from the surroundings.
(C) Determine the heat transfer from the plate to the surroundings.
(D) Determine the required electric power.
Keep in mind that both the bottom and top surfaces of the workpiece are exposed to radiation and convection. The workpiece is suspended in air in the furnace.
Chapter 13 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 13 - Determine F12 and F21 for the following...Ch. 13 - Drive expressions for the view factor F12...Ch. 13 - A right-circular cone and a right-circular...Ch. 13 - Consider the two parallel, coaxial, ringshaped...Ch. 13 - The “crossed-strings” method of Hottel [13]...Ch. 13 - Consider the rightcircular cylinder of diameter D,...Ch. 13 - Consider the parallel rectangles shown...Ch. 13 - Consider the perpendicular rectangles shown...Ch. 13 - The reciprocity relation, the summation rule, and...Ch. 13 - Determine the shape factor, F12, for the...
Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 816C and 260C, respectively. Determine the rate of heat transfer by radiation between the plates in W/m2 and the radiative heat transfer coefficient in W/m2K.arrow_forward11.31 A large slab of steel 0.1 m thick contains a 0.1 -m-di- ameter circular hole whose axis is normal to the surface. Considering the sides of the hole to be black, specify the rate of radiative heat loss from the hole. The plate is at 811 K, and the surroundings are at 300 K.arrow_forward11.68 Two infinitely large, black, plane surfaces are 0.3 m apart, and the space between them is filled by an isothermal gas mixture at 811 K and atmospheric pressure. The gas mixture consists of by volume. If one of the surfaces is maintained at 278 K and the other at 1390 K, calculate (a) the effective emissivity of the gas at its temperature, (b) the effective absorptivity of the gas to radiation from the 1390 K surface, (c) the effective absorptivity of the gas to radiation from the 278 K surface, and (d) the net rate of heat transfer to the gas per square meter of surface area.arrow_forward
- 1.28 The sun has a radius of and approximates a blackbody with a surface temperature of about 5800 K. Calculate the total rate of radiation from the sun and the emitted radiation flux per square meter of surface area.arrow_forwardDetermine the total average hemispherical emissivity and the emissive power of a surface that has a spectral hemispherical emissivity of 0.8 at wavelengths less than 1.5m, 0.6 at wavelengths from 1.5to2.5m, and 0.4 at wavelengths longer than 2.5m. The surface temperature is 1111 K.arrow_forwardDetermine the rate of radiant heat emission in watts per square meter from a blackbody at (a) 15C, (b) 600C, and (c) 5700C.arrow_forward
- A thin, disk-shaped silicon wafer of diameter D=20 cm on a production line must be maintained at a temperature of 100 deg C. The wafer loses heat to the room by convection and radiation from its upper surface, while heat is supplied at a constant flux from below. The surrounding air is at 20 deg C, while all surrounding surfaces (which can be treated as blackbodies) can be approximated to be isothermal at a temperature of 15 deg C. The wafer-to-air heat transfer coefficient is 30 W/m2-K and the emissivity of the wafer’s surface (which can be approximated to be gray) is 0.85. How much heat (in W) must be supplied to the wafer?arrow_forwardDetermine the net radiative heat transfer in an isoscales trapezoid (meaning, a trapezoid with two parallel lines, a 2 sets of equal angles). The two parallel lines have lengths of 0.1 (and emissivity of 0.9) and 0.5 (emissivity of 0.8), The other 2 sides have lengths of 0.3, and both have emissivities of 0.9.arrow_forward1. A small gray sphere, with an emissivity coefficient of 0.5 and a surface temperature of 537°C, is located in a black body wrap with a temperature of 35°C. For this system, calculate the net rate of heat transfer per unit of surface area of the sphere. 2. Gaseous oxygen is maintained at pressures of 2 atm and 1 atm on the opposite sides of a rubber membrane, which has a thickness of 0.5 mm, and the entire system is at 25°C. What is the diffusive mass flow of gas through the membrane? DAB=0.21x10^-9 m^2/s; O = 16 g/mol 3. Pure oxygen gas at 2 bar and 25°C is flowing through a rubber hose of 10 m long, with 40 mm internal diameter and 2 mm wall thickness. The external surface is exposed to an air stream in which the partial pressure of the gas is 0.1 bar. The diffusivity and solubility of the gas in the hose material are 0.21x10^-9 m^2/s and 3.12x10^-3 kmol/m^3.bar. respectively. Determine the mass rate at which the gas leaks out of the hose. 4. Consider the diffusion of gaseous…arrow_forward
- Daylight may be approximated as a blackbody at the effective surface temperature of 5800 K. Determinethe fraction of radiation emitted that falls in the UV (0.1 – 0.4 μm) and visible (0.4 – 0.76 μm) region.(Ans: 0.1245, 0.4243)arrow_forwardTwo concentric spheres of diameter D1= 0.9 m and D2= 1.2 m are separated by an air space and have surface temperatures of T1= 400 K and T2= 300 K. (a) If the surfaces are black, what is the net rate of radiation exchange between the spheres, in W? q12= Enter your answer for part (a) in accordance to the question statement W (b) What is the net rate of radiation exchange between the surfaces if they are diffuse and gray with ε1= 0.5 and ε2= 0.05, in W? q12= Enter your answer for part (b) in accordance to the question statement W (c) What is the net rate of radiation exchange if D2 is increased to 20 m, with ε2= 0.05, ε1= 0.5, and D1= 0.9 m, in W? q12= Enter your answer for part (c) in accordance to the question statement W (d) What is the net rate of radiation exchange if the larger sphere behaves as a black body (ε2= 1.0) and with ε1= 0.5, D2= 20 m, and D1= 0.9 m, in W? q12= Enter your answer for part(d) in accordance to the question statement Warrow_forwardRadiative heat transfer is intended between the inner surfaces of two very large isothermal parallel metal plates. While the upper plate (designated as plate 1) is a black surface and is the warmer one being maintained at 727 °C the lower plate (plate 2) is a diffuse and gray surface with an emissivity of 0.7 and is kept at 227 °C. Assume that the surface are sufficiently large to form a two-surface enclosure and steady state conditions to exist. Stefan-Boltzmann constant is given as 5.67 x 10-8 W/m²-K4. (1) The irradiation (in kW/m²) for the plate (plate 1) isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license