Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 13.115P
Consider the tube and radiation shield of Problem 13.49, hut now account for free convection in the gap between the tube and the shield.
(a) What is the total rate of heat transfer per unit length between the tube and the shield?
(b) Explore the effect of variations in the shield diameter on the total heat rate, as well as on thecontributions due to convection and radiation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem: Convection related
A horizontal uninsulated steam pipe passes through a large room whose walls and ambient air are at 300 K. The pipe of 125-mm diameter has an emissivity of 0.85 and an outer surface temperature of 373 K. Calculate the rate of heat loss per unit length from the pipe.
Heat transfer problem.The internal surface area is an enclosure is 50 meter square. The surface is black and maintained at constant temperature. A small opening in the enclosure has area 0.05 meter square. The radiant power emitted from the opening is 52W. (A) what’s the temperature of the interior enclosure wall. (B)if the interior surface is maintained in this temperature, but polished so that emissivity is 0.15, what will be the radiant power emitted in the opening.
Complete answer thank you
Chapter 13 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 13 - Determine F12 and F21 for the following...Ch. 13 - Drive expressions for the view factor F12...Ch. 13 - A right-circular cone and a right-circular...Ch. 13 - Consider the two parallel, coaxial, ringshaped...Ch. 13 - The “crossed-strings” method of Hottel [13]...Ch. 13 - Consider the rightcircular cylinder of diameter D,...Ch. 13 - Consider the parallel rectangles shown...Ch. 13 - Consider the perpendicular rectangles shown...Ch. 13 - The reciprocity relation, the summation rule, and...Ch. 13 - Determine the shape factor, F12, for the...
Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A long wire 0.7 mm in diameter with an emissivity of 0.9 is placed in a large quiescent air space at 270 K. If the wire is at 800 K, calculate the net rate of heat loss. Discuss your assumptions.arrow_forward1.13 If the outer air temperature in Problem is –2°C, calculate the convection heat transfer coefficient between the outer surface of the window and the air, assuming radiation is negligible.arrow_forwardPlease help to my questionarrow_forward
- Question One Explain how heat is transferred from one point to another illustrating with appropriate diagram. Calculate the heat flow per square meter (heat flux) through water medium with thermal conductivity of 0.6, flowing in a 5 cm thickness space, if the temperatures on the two surfaces are 50 and 210°C, respectively. Question 2 Distinguish between force and free convection with the aid of appropriate illustrations. What is the approximate temperature difference between a hot plate and the surrounding air if the heat flux from the plate is 800 W/m2? Assume that the air is flowing past the surface with a velocity of 5 m/s giving a heat transfer coefficient of 20 W/(m2K). Question 3 Explain the differences between laminar and turbulent flow Water (ν = 0.86x10-6m2/s) flows through a tube with the diameter 12 mm at a velocity of 2 m/s. Determine if the flow is laminar or turbulent!arrow_forwardCalculate the thickness of the magnesia insulation necessary to restrict the heat loss to 5 BTU/hr-ft2 through the walls of a furnace having inside and ambient temperatures of 1500 oF and 150 oF, respectively. The furnace wall is ¼ in, steel plate and 3 in refractory lining. Thermal conductivity in BTU/hr –ft-oF are kref = 0.6, ksteel = 26, kmag=0.03arrow_forward-1. Natural Convection from an Oven Wall. The oven wall in Example 15.5-1 is insu- lated so that the surface temperature is 366.5 K instead of 505.4 K. Calculate the natural convection heat-transfer coefficient and the heat-transfer rate per m of width. Use both Eq. (15.5-4) and the simplified equation. (Note: Radiation is being neglected in this calculation.) Use both SI and English units.arrow_forward
- A cylinder 6”in diameter and 18”long is suspended horizontally in a largeroom. The air and wall surfaces of the room are at a temperature of 60 °Fwhile the surface temperature of the cylinder is 440 °F. Compute (a) thesurface coefficient due to free convection, (b) the heat transferred by freeconvection (neglecting the end areas), (c) the surface coefficient due toradiation if the surface emissivity is 0.75, and (d) the total heattransferred by free convection and radiation (neglecting end areas)arrow_forwardSpacecraft must be cooled via radiative mechanisms, and one means of doing this is by using radiation fins. In many instances, these fins are heated rods that protrude from the spacecraft. Assume that the rod is of length, L; cross-sectional are, Ac; and perimeter, Pā. Its base temperature is T, and the rod has thermal conductivity and emissivity, λ and ɛ, respectively. Set up the differential equation describing the temperature profile within the rod assuming that space is a blackbody at Ts.arrow_forwardA building window pane that is 1.68 m high and 1.12 m wide is separated from the ambient air by a storm window of the same height and width. The air space between the two windows is 0.06 m thick. If the building and storm windows are at 20 and -10°C, respectively, what is the rate of heat loss by free convection across the air space, in W? q = Warrow_forward
- The small horizontal metal tube with an OD of 0.05 m, 0.1 m long, and with a surface temperature of 25 C is in a very large furnace enclosure with firebrick walls and the surrounding air at 500 C. The emissivity of the metal tube is 0.6. Calculate the net heat transfer to the tube by radiation in Watts.arrow_forwardA 1.25-m high by 2.5-m wide window is inset from the face of the wall 0.15 m. Calculate the shading provided by the inset at 2 P.M. sun time if the window is facing south at 32° north latitude, August 21 Determine the total thermal resistance of a unit area of the wall section shown in Fig. HOutside air film Face brick, 90 mm Air space Sheathing, 13-mm fiberboard Insulation, 75-mm mineral fiber Air space Gypsum board, 13 mm Inside air film Determine the peak heat gain through a west-facing brick veneer wall (similar in cross section- to that shown in above), July 21 at 40° north latitude. The inside temperature is 25°C, and the average daily temperature is 30°C. An office in Houston, Texas, is maintained at 25°C and 55 percent relative humidity. The average occupancy is five people, and there will be some smoking. Calculate the cooling load imposed by ventilation requirements at summer design conditions with supply air conditions set at 15°C and 95 percent relative humidity if (a) the…arrow_forward2. Consider a vertical, single-pane window of width = height = 1 m. The interior surface is exposed to the air and walls of a room, which are each at 18°C. Under cold ambient conditions for which a thin layer of frost has formed on the inner surface, what is the heat loss through the window? As with most natural convection problems, radiation heat transfer may NOT be neglected. Use Trad =EσA (T-T4) with & = 0.90.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license