Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.30P
In the arrangement shown, the tower disk has a diameter of 30 mm and a temperature of 500 K. The upper surface, which is at 1000 K, is a ring-shaped disk with inner and outer diameters of 0.15 m and 0.2 m. This upper surface is aligned with and parallel to the lower disk and is separated by a distance of 1 m.
Assuming both surfaces to be blackbodies, calculate their net radiative heat exchange.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the net radiative heat transfer in an isoscales trapezoid (meaning, a trapezoid with two parallel lines, a 2 sets of equal angles).
The two parallel lines have lengths of 0.1 (and emissivity of 0.9) and 0.5 (emissivity of 0.8), The other 2 sides have lengths of 0.3, and both
have emissivities of 0.9.
A dryer is shaped like a long semicylindrical ductof diameter 1.5 m. The base of the dryer is occupied withwater-soaked materials to be dried. The base is maintainedat a temperature of 370 K, while the dome of the dryer ismaintained at 1000 K. If both surfaces behave as blackbody, determine the drying rate per unit length experienced by the wet materials.
Radiative heat transfer is intended between the inner surfaces of two very large isothermal parallel metal plates. While the upper plate (designated as plate 1) is a black surface and is the warmer one being maintained at 727 °C the lower plate (plate 2) is a diffuse and gray surface with an emissivity of 0.7 and is kept at 227 °C. Assume that the surface are sufficiently large to form a two-surface enclosure and steady state conditions to exist.
Stefan-Boltzmann constant is given as 5.67 x 10-8 W/m²-K4.
(1) The irradiation (in kW/m²) for the plate (plate 1) is
Chapter 13 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 13 - Determine F12 and F21 for the following...Ch. 13 - Drive expressions for the view factor F12...Ch. 13 - A right-circular cone and a right-circular...Ch. 13 - Consider the two parallel, coaxial, ringshaped...Ch. 13 - The “crossed-strings” method of Hottel [13]...Ch. 13 - Consider the rightcircular cylinder of diameter D,...Ch. 13 - Consider the parallel rectangles shown...Ch. 13 - Consider the perpendicular rectangles shown...Ch. 13 - The reciprocity relation, the summation rule, and...Ch. 13 - Determine the shape factor, F12, for the...
Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What types of polymers are most commonly blow molded?
DeGarmo's Materials and Processes in Manufacturing
The moment of inertia Iy for the slender rod in terms of the rod’s total mass m .
Engineering Mechanics: Statics & Dynamics (14th Edition)
A pipe flowing light oil has a manometer attached, as shown in Fig, P1.52. What is the absolute pressure in pip...
Fundamentals Of Thermodynamics
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to t...
Mechanics of Materials (10th Edition)
3.3 It is known that a vertical force of 200 lb is required to remove the nail at C from the board. As the nail...
Vector Mechanics for Engineers: Statics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 11.31 A large slab of steel 0.1 m thick contains a 0.1 -m-di- ameter circular hole whose axis is normal to the surface. Considering the sides of the hole to be black, specify the rate of radiative heat loss from the hole. The plate is at 811 K, and the surroundings are at 300 K.arrow_forwardTwo large parallel plates with surface conditions approximating those of a blackbody are maintained at 816C and 260C, respectively. Determine the rate of heat transfer by radiation between the plates in W/m2 and the radiative heat transfer coefficient in W/m2K.arrow_forwardDetermine the total average hemispherical emissivity and the emissive power of a surface that has a spectral hemispherical emissivity of 0.8 at wavelengths less than 1.5m, 0.6 at wavelengths from 1.5to2.5m, and 0.4 at wavelengths longer than 2.5m. The surface temperature is 1111 K.arrow_forward
- 11.68 Two infinitely large, black, plane surfaces are 0.3 m apart, and the space between them is filled by an isothermal gas mixture at 811 K and atmospheric pressure. The gas mixture consists of by volume. If one of the surfaces is maintained at 278 K and the other at 1390 K, calculate (a) the effective emissivity of the gas at its temperature, (b) the effective absorptivity of the gas to radiation from the 1390 K surface, (c) the effective absorptivity of the gas to radiation from the 278 K surface, and (d) the net rate of heat transfer to the gas per square meter of surface area.arrow_forwardCalculate the net heat flux per unit area and by radiation between two infinitely large parallel plates with a very small space between them. They both behave as black bodies and are kept at 1000K and 500K, respectively.arrow_forwardCalculate the radiation heat exchange in 1 day between two black planes having the area of the surface of a 0.7-m-diameter sphere when the planes are maintained at 70 K and 300K.arrow_forward
- A gray body with a constant surface temperature of 7000C and a surface area of 500cm2 radiates in a large room, whose surfaces are black and maintained at 1000C. If the gray surface emittance is 0.6, determine the radiative heat transfer between the surface and the room.arrow_forwardTwo parallel disks of diameter D=0.8 m seperated by L=0.4 m are located directly on top of each other. Both disks are black and are maintained at a temperature of 450 K. The back sides of the disks are insulted, and the environment that the disks are in can be considered to be a blackbody at 300 K. Determine the net rate of radiation heat transfer from the disks to the environment.arrow_forwardQuestion #9 A circular ceramic plate that can be modelled as a blackbody is being heated by an electrical heater. The plate is 30cm in diameter and is situated in a surrounding ambient temperature of 15°C where the natural convection heat transfer coefficient is 12W/m² K. The efficiency of the electrical heater to transfer heat to the plate is 80%, the electric power is required such that the heater needs to keep the surface temperature of the plate at 200°C. Ambient 15°C Tsurr = 15°C h = 12 W/m².K Ceramic plate -T₂ = 200°C Welec (A) Determine the heat emitted from the plate, as a blackbody. (B) Determine the radiation incident on the plate from the surroundings. (C) Determine the heat transfer from the plate to the surroundings. (D) Determine the required electric power.arrow_forward
- Pravinbhaiarrow_forward9. Consider the three-surface enclosure shown. The lower plate (A1) is a black disk of 200- mm diameter and is supplied with a heat rate of 10,000 W. The upper plate (A2), a disk coaxial to A₁, is a diffuse, gray surface with 2 = 0.8 and is maintained at T₂ = 473 K. The diffuse, gray sides between the plates are perfectly insulated. Assume convection heat transfer is negligible. (40 points) (a) Determine the operating temperature of the lower plate, T₁. (b) Determine the temperature of the insulated side, T3. D= 0.2 m - A2, T₂ = 473 K, &₂ = 0.8 L = 0.2 m A3, T3, insulated P = 10,000 W A₁, T₁, black surfacearrow_forwardA thin-walled tube has its inner surface coated with polypropylene lining. The ASME Code for Process Piping limits the maximum use temperature for polypropylene lining to 107°C. The tube has a diameter of 4 cm. Assume the tube behaves as a blackbody and irradiation on the tube from the surroundings is negligible. Determine the maximum amount of total radiation emission rate per unit length of the tube that can be achieved without exceeding the maximum use temperature for polypropylene lining. The total radiation emission rate per unit length of the tube is_____W/m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license