Coated metallic disks are cured by placing them at the top of a cylindrical furnace whose bottom surface is electrically heated and whose sidewall may be approximated as a reradiating surface. Curing is accomplished by maintaining a disk at
Assuming steady-state operation and neglecting convection within the cylindrical cavity, determine the electrical power that must be supplied to the heater and the convection coefficient h that must be maintained at the outer surface of the disk in order to satisfy the prescribed conditions.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Fundamentals of Heat and Mass Transfer
- The surface temperature of the hot side of the furnace wall is 1200°C. It is desired to maintain the outside of the wall at 38°C. A 152 mm of refractory silica is used adjacent to the combustion chamber and 10 mm of steel covers the outside. What thickness of insulating bricks is necessary between refractory and steel, if the heat loss should be kept at 788 W/m²? Use k = 13.84 W/m-K for refractory silica; 0.15 for insulating brick, and 45 for steel. Badly needed asap. I will rate helpful. Thank you in advance.arrow_forward., In a certain experiment, cylindrical samples of diameter 4 cm and length 7 cm are used (see Fig. 1-29). The two thermocouples in each sample are placed 3 cm apart. After initial transients, the electric heater is observed to draw 0.6 A at 110 V, and both differential thermometers read a temperature difference of 10°C. Determine the thermal conductivity of the sample. Insulation Resistance heater Sample Sample Cooling fluid Thermocouple a AT₁ LAT, Cooling fluidarrow_forwardA steam pipe 75 mm inside and 90 mm outside diameter is lagged with two successive layers of insulation. The layer in contact with the pipe is 38 mm asbestos and the asbestos layer is covered with 25 mm thick magnesia insulation. The convective film coefficients for the inside and outside surfaces are 227 W/m2-K and 6.8 W/m2-K, respectively. The steam temperature is 375oC and the ambient temperature is 35oC. Thermal conductivities in W/m-oC area as follows: pipe material=45, asbestos= 0.14, and magnesia insulation=0.07. Illustrate and label the schematic layout and the equivalent thermal network and calculate (a) the steady state loss of heat transfer for 60 m length of pipe length, (b) the overall heat transfer coefficient based on the outside and inside surface areas of the lagged steam pipe, and (c) the interface temperature between the two layers of insulations.arrow_forward
- a pipe with an outside diameter of 2.5 inches is insulated with 2 inches layer of asbestos ( K= 0.396(btu-in)/(hr-ft-F) followed by a layer of cork 1.5 inches thick ( K= 0.30 (btu-in)/ft (hr-ft-F). if the temperature of the outer surface of the cork and pipe is 90 F and 290 F RESPECTIVELY, calculate the heat loss per 100 ft of insulated pipe in btu/hrarrow_forwardIf a heat transfer coefficient of 2.84 W l(m2 • K) exists on each of the two inside faces of two sheets of 6.35-mm-thick glass separated by an air gap, calculate the gap that can be used such that the rate of heat transfer by conduction through the air gap equals the rate of heat transfer by convection. What is the rate of heat transfer if this gap is exceeded. The thermal conductivity of air of 0.0242 WI (m . K). Solve for temperature of 20°C and 12°C on the outside surfaces of the glass. Would the calculated gap change in value for different values of the surface temperatures? Would there be any advantage to increasing the gap beyond this calculated value?arrow_forwardA wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.13 m2 and whose thickness is 8 mm. Treat the wall as a slab of the insulating material Styrofoam whose area and thickness are 19 m2 and 0.10 m, respectively. Heat is lost via conduction through the wall and the window. The temperature difference between the inside and outside is the same for the wall and the window. Of the total heat lost by the wall and the window, what is the percentage lost by the window?arrow_forward
- A metal furnace with a 1.25 m x 0.75 m metal door is placed in a room and set to 400K. A 0.3 m x 0.3 m glass window is located in the furnace door. The thickness of the metal alloy and the glass window are 3 mm and 2 mm, respectively. The glass window has a thermal conductivity (k) of 0.7 W/m .K and the metal door has a thermal conductivity (k) of 3.5 W/m.K. The convective heat coefficient hi and ho on each site of the furnace door is estimated as 10W/m2.K. Assuming the room temperature is held constant at 297 K, calculate the total heat loss from the furnace door. P.S Could you write the solution clearly to better understanding? Step by step using formulas. Another page with detailed steps would be better. Thanks in advance.arrow_forwardwatts. A steam (h = 6000 m²K with a temperature of 500 Kelvin passes through an 1.1m long iron pipe (0.5cm thick) with thermal conductivity of 52 m K watts The outside diamter of the pipe which is 13.1 cm is insulated by fiberglass (k = 0.04 watts which is 0.5 cm thick. The temperature of the ambient air, steam-pipe interface, pipe-insulation interface, and insulation- ambient air interface is 300K, 490K, 450K, and 330K respectively. Calculate Q and new K for insulation if Q is to be decreased to 87.5%arrow_forwardthick-walled tube of stainless steel [18% Cr, 8% Ni, k = 19 W/m · ◦C] with 2-cm inner diameter (ID) and 4-cm outer diameter (OD) is covered with a 3-cm layer of asbestos insulation [k = 0.2 W/m · ◦C]. If the inside wall temperature of the pipe is maintained at 600◦C, calculate he heat loss per meter of length. Also calculate the tube–insulation interface temperature.arrow_forward
- The temperatures on the left and right surfaces of a 15-cm thick wall are 375C and 85C . The wall is constructed of a material with the following properties: k=0.78, p=2700, Cp=0.84. What is the thermal diffusivity of the wall in m^2/s ?arrow_forwardThe author and his then 6-year-old son have conducted the following experiment to determine the thermal conductivity of a hot dog. They first boiled water in a large pan and measured the temperature of the boiling water to be 94°C, which is not surprising, since they live at an elevation of about 1650 m in Reno, Nevada. They then took a hot dog that is 12.5 cm long and 2.2 cm in diameter and inserted a thermocouple into the midpoint of the hot dog and another thermocouple just under the skin. They waited until both thermocouples read 20°C, which is the ambient temperature. They then dropped the hot dog into boiling water and observed the changes in both temperatures. Exactly 2 min after the hot dog was dropped into the boiling water, they recorded the center and the surface temperatures to be 59°C and 88°C, respectively. The density of the hot dog can be taken to be 980 kg/m3, which is slightly less than the density of water, since the hot dog was observed to be floating in water while…arrow_forwardAnswer within 10 minutes : The temperature at the inside surface of an oven is 460 oF. The inside wall of the oven is made of brick and is 8 inch thick. The thermal conductivity of the brick is 2.2 Btu/hr.ft2.(oF/ft). The outside of the oven is covered with a 3-inch layer of asbestos as insulation, which has a thermal conductivity of 0.11 Btu/hr.ft2.(oF/ft). If the outer surface of the insulation has a temperature of 100 oF , calculate the amount of heat lost through 2 ft2 of wall area in 3 hours.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning