Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.39P

A manufacturing process calls for heating long copper rods, which are coated with a thin film having ε = 1 , by placing them in a large evacuated oven whose surface is maintained at 1650 K. The rods are of 10-mm diameter and are placed in the oven with an initial temperature of 300 K.
(a) What is the initial rate of change of the rod temperature!
(b) How long must the rods remain in the oven to achieve a temperature of 1000 K?
(c) The heating process may be accelerated by routing combustion gases, also at 1650 K, through the oven. For convection coefficients of 10, 100, and 500 W/m 2 K , determine the time required for the rods to reach 1000 K.

Blurred answer
Students have asked these similar questions
I need the solution in hand writing ..
A solid sphere made of polished copper has a diameter of 2 cm and is at 100 C. We now expose the solid sphere to are at 50 C and 1 atm. Use the lumped capacitance method to plot the temperature of the solid sphere versus time after five minutes of exposure. The air is quiescent.
The surface temperature of the hot side of the furnace wall is 1200 degrees C. It is desired to maintain the outside of the wall at 38 degrees C. A 152 mm of refractory silica is used adjacent to the combustion chamber and 10 mm of steel covers the outside. What thickness of insulating bricks is necessary between refractory and steel, if the heat loss should be kept at 788 W/m2? Use k=13.84 W/m-K for refractory silica; 0.15 for insulating brick, and 45 for steel.

Chapter 13 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license