Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.85P
Consider a circular furnace that is 0.3 m long and 0.3 in in diameter. The two ends have diffuse, gray surfaces that are maintained at 400 and 500 K with emissivities of 0.4 and 0.5, respectively. The lateral surface is also diffuse and gray with an emissivity of 0.8 and a temperature of 800 K. Determine the net radiative heat transfer from each of the surfaces.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q In a test on a two.. strok, heavy oil, marine engine, the following observations were
made: Oil consumption, 4.05 kg/h; Calorific value of oil, 43000kj/kg; het brake
load 579N; Mean brake diameter, 1m; mean effective pressure 275 kN/m²; cylinder diameter
0.20m; stroke, 0.250m; speed, 360 rpm.
Calculate
the mechanical efficiency the indicated thermal efficiency Y
The brake thermal efficiency and the quantity of jacket water required per
مسموح به
امتصت
minute if 30% of the energy supplied by the fuel is absorbed by this water.
Permissible rise in temperature is 20k and specific heat capacity of water-4.1868 kj
Answers [84.2%, 26-8%, 22.6%, 8.33 kg/min]
kg.k
عماد داود عبود
Q78 A four cylinder, four-stroke Petrol engine has a compression ratio of 6 to 1. A test on
this engine gave the following results;
Net brake load = 20 kg, effective brake arm = 0.5 m, indicated mep=6*105 N/m², engine
speed 2400 rpm, fuel consumption = 10 kg/h, Calorific value of the fuel = 44000kj/kg,
Cylinder bore 86 mm, engine stroke-100mm.
ข่าวล
Calculate: the mechanical efficiency, ⑥the brake thermal efficiency the relative
efficiency assuming the engine works on the Constant volume cycle and that 8-1.4 forair
⑧The brake mean effective pressure.
Answers 1 88.4%, 48/5-35 × 105 N/m² 1
و
و
D2L MCG3740_Final_2018 - MC...
D2L Accueil - Université d'Ottaw...
← Homework 6 - Fall 2024
Τρ
Question 3 of 4
<
סוי
education.wiley.com
Sephora
G formule vitesse angulaire en...
WP Homework 6 - Fall 2024
X WP Question 3 of 4 - Homewor...
Mail - Pierre Sarr - Outlook
- / 10
0
Current Attempt in Progress
For the instant represented, crank OB has a clockwise angular velocity w = 1.22 rad/sec and is passing the horizontal position.
Determine the corresponding magnitudes of the velocity of the guide roller A in the 22° slot and the velocity of point C midway
between A and B.
15"
7
C. 32"
AO
22%
B
Answers:
VA =
VC =
-
eTextbook and Media
Save for Later
in./sec
in./sec
Attempts: 0 of 1 used
Submit Answer
Chapter 13 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 13 - Determine F12 and F21 for the following...Ch. 13 - Drive expressions for the view factor F12...Ch. 13 - A right-circular cone and a right-circular...Ch. 13 - Consider the two parallel, coaxial, ringshaped...Ch. 13 - The “crossed-strings” method of Hottel [13]...Ch. 13 - Consider the rightcircular cylinder of diameter D,...Ch. 13 - Consider the parallel rectangles shown...Ch. 13 - Consider the perpendicular rectangles shown...Ch. 13 - The reciprocity relation, the summation rule, and...Ch. 13 - Determine the shape factor, F12, for the...
Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 11. A load of 2 kN is dropped axially on a close coiled helical spring, from a height of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter wire. The spring index is 8. Find the maximum shear stress induced in the spring and the amount of compression produced. The modulus of rigidity for the material of the spring wire is 84 kN/mm². [Ans. 287 MPa; 290 mm] higoted to a load which variesarrow_forwardCan you produce code in MATLAB for the Differential Algebra Initial Orbit Determination algorithm for doppler only radars?arrow_forwardCan you produce code for the alogorithm in MATLAB for an IOD method for Doppler only radars with uncertainty quantification capabilities?arrow_forward
- (a) Draw a sketch (which will be used in the FluidSIm software) the design and assembly of the Hydraulic Circuit for the drive (fixing and working) of a drill, with the following characteristics: - Sequential operation, put pressure, for advance and return of the cylinders (according to the proper operation for the device) controlled by a directional 4x3 electric drive way; (b) The circuit must provide for different speed ranges for drilling work so as to allow different materials to be treated. Note: Set the safety valve to 55 bar.arrow_forward1/2 0.3 Investigate the complex potential function f(z) U (z+a), where a is a constant, and interpret the flow pattern. (Find the steamfunction and potentialfunction of the flow and plot some streamlines).arrow_forwardQ.3 water flows over a flat surface at upstream velocity U. A pump draws off water through a narrow slit a volume rate of (m) m³/s per meter of the slit. Assumed fluid is incompressible and invicid. (a) Write the complex potential function of the combined flow. (b) Find the stream and potential functions of the flow. (c) Locate the stagnation point on the wall (point A). U (m) m³/s (per meter of length of slit)arrow_forward
- Q.2 Consider steady, laminar, incompressible fluid flow in a two-dimensional diverging channel as shown in the figure. The inclined walls of the channel are straight, and the fluid enters the diverging section with velocity V₁ = 40 m/s. Given H = 1 m, and assume unit width. (a) Determine an expression for the velocity component u as a function of position x along the H channel. (u does not depend on y.) (b) Determine an expression for the acceleration of the fluid in the x-direction. (c) An expression for the velocity component v (d) An expression for the acceleration in the y-direction V₁ L = 10H h(x) 4Harrow_forwardA hydrocarbon fuel of C7H16 is burned in steady flow combustion chamber with 50 mole of air. Both the fuel and air enters the combustion chamber at 25 °C and products temperature is 1200 K. Find the actual air fuel ratio and the heat released during this processarrow_forwardCompare the thermal efficiency of a steam power plant operating on the ideal Rankine cycle with a reheat stage to another scenario where the reheat stage is replaced by an open feedwater heater. A. In the first scenario, steam enters the high-pressure turbine at 15 MPa and 600°C, then moves to the reheater at 4 MPa, where it is reheated to 600°C, and finally expands to 10 kPa in the condenser. B. In the second scenario, some steam leaves the turbine at a pressure of 1.2 MPa and enters the open feedwater heater. The steam then continues to expand to 10 kPa in the condenser. Calculate and compare the thermal efficiencies of both cycles."arrow_forward
- The design and assembly of the Hydraulic Circuit of drive (clamping and working), in the FluidSim software, with the following characteristics: Sequential operation, put pressure, for the advance and return of the cylinders (according to the proper operation for the device) controlled by a directional 4x3 electric drive way; The circuit must provide for different speed ranges for drilling work in order to allow different materials to be processed. NOTE: Set the safety valve to 55 bar.arrow_forwardممكن الحلarrow_forwardSolve this problem and show all of the workarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license