Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 13.81P
The cylindrical peephole in a furnace wall of thickness
Determine the heat loss by radiation through the peephole.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A room of length 5m height 5m and width 5m is heated through the floor by maintaining it at a uniform temperature of 350 K. while side walls are well insulated. The heat
loss takes place through the ceiling at 300 K. Assuming that all surfaces have an emissivity of 0.8. determine the rate of heat loss by radiation through the ceiling.
BIU
非
Σ
Given-
Imagine you have two concentric, coaxial cylindrical tubes with an evacuated annular space, with equal lengths L. The outer radius of the inner cylinder is r, and the inner radius of the outer cylinder is R. If we want to minimize the self-viewing factor of the inner surface of the outer cylinder, which of the following geometric changes would you suggest?
r is fixed, decrease R with fixed R and L, decrease r
with fixed r and R, decrease L
R is fixed, increase L
r is fixed, increase R
can you answer the question
Chapter 13 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 13 - Determine F12 and F21 for the following...Ch. 13 - Drive expressions for the view factor F12...Ch. 13 - A right-circular cone and a right-circular...Ch. 13 - Consider the two parallel, coaxial, ringshaped...Ch. 13 - The “crossed-strings” method of Hottel [13]...Ch. 13 - Consider the rightcircular cylinder of diameter D,...Ch. 13 - Consider the parallel rectangles shown...Ch. 13 - Consider the perpendicular rectangles shown...Ch. 13 - The reciprocity relation, the summation rule, and...Ch. 13 - Determine the shape factor, F12, for the...
Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
For the beam loading of Figure P334, draw the complete shearing force and bending moment diagrams, and determin...
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
Assume the following vectors are already defined: V1=[302]V2=[214]V3=[5131]V4=[0.50.10.20.2] For each of the fo...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
A pipe flowing light oil has a manometer attached, as shown in Fig, P1.52. What is the absolute pressure in pip...
Fundamentals Of Thermodynamics
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to t...
Mechanics of Materials (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A particular furnace is shaped like a section of a cone. The top surface of the furnace is uniformly heated by a resistance heater. During operation, the top surface is measured to be 800 K and the power supplied to the resistance heater is 1750 W/m². The sidewall of the furnace is perfectly insulated with & = 0.2. If the emissivity of the top and bottom surfaces are ε = 0.5 and ε = 0.7, respectively, determine the temperatures of the sidewall and the bottom surface of the furnace. A₁ A2 A3 →→D₂ = 20 mm D₁ = 40 mm L = 50 mmarrow_forwardWhich one is correct answer it fast urgentarrow_forwardEarth absorbs solar energy and radiates infrared energy. The intensity of the solar radiation incident on earth is J = 1350 Wm-2, also known as the solar constant. Assume earth’s surface (ground) temperature to be uniform at Ts, and that the ground and atmosphere are black (emissivity = 1) for infrared radiation. The radius of the earth is 6.378 x 106 m. The diagram shows the ground at the surface temperature Ts and the atmosphere, represented as a thin black layer, at temperature Ta . Suppose the atmosphere absorbs 100% of the infrared radiation emitted by the ground. Assume that the ground absorbs 47.5% of the incident solar energy, and that the atmosphere absorbs 17.5% of the incident solar energy (for a total of 65% absorbed by the planet). Calculate the "steady state” numerical values of the earth’s ground temperature Ts and the atmospheric temperature Ta taking into account the “greenhouse effect” of atmospheric infrared absorption and emission described above.arrow_forward
- Two very large parallel plates are kept at uniform temperatures T1=800 K and T2=500 K, and have emissivities ε1=0.2 y ε2=0.7, respectively, as shown in the figure. Determine the net rate of radiation heat transfer between the two surfaces per unit surface area of the plates.arrow_forwardConsider a silicon wafer positioned in a furnace that is zone-heated on the top section and cooled on the lower section. The wafer is placed such that the top and bottom surfaces of the wafer exchange radiation with the hot and cold zones respectively of the furnace. The zone temperatures are Tsur,h = 1050 K and Tsur.e = 330 K. The emissivity and thickness of the wafer are e = 0.65 and d = 0.78 mm, respectively. With the ambient gas at T. = 700 K, convection heat transfer coefficients at the upper and lower surfaces of the wafer are 8 and 4 W/m²-K. Find the steady-state temperature of the wafer, in K. Tw i Karrow_forwardA plate-type solar energy collectorr with an absorbing surface covered by a glass is to receive an incident radiation of 800 W/m2. The glass plate has a reflectivity of 0.12 and a transmissivity of 0.80. The absorbing surface has an absorptivity of 0.90. The area of the collector is 5 m2. How much solar energy in watts is absorbed by the collector? ANSWER: 3060 WATTSarrow_forward
- A certain body at 20C is displayed on a top of a building during the night. The body sees nothing but the sky which has an effective temperature of 110K. Determine the heat transfer rate from the body to the sky if the body temperature is maintained at 23C, the surface emissivity of the body is equal to 0.92, and none of the radiation going out of the comes backarrow_forwardTwo parallel plates (1mx0.5m) are maintained at uniform temperatures of T₁ = 1000K and T₂ = 500K and have emissivities of &, = 0.2 and ₂ = 0.5 respectively. Determine the net rate of radiation heat transfer between the two surfaces of the plates. F12=0.285 and o=5.669×10 W/m²K.arrow_forwardTwo circular plates of radii r1= 4 cm and r2 = 2 cm are (9) cm apart. Find view factorF21.arrow_forward
- An electric hot plate is placed in a room which is maintained at a temperature of 297 K. The plate is maintained at a temperature of 403 K and has an emissivity of 0.8. If the plate surface resembles a circular disc of diameter 250 mm, electrical power consumed by the hot plate will be?arrow_forwardA one-dimensional plane wall is exposed to convective and radiative conditions at x = 0. The ambient and surrounding temperatures are T = 15C and Tsur = 80C, respectively. The convection heat transfer coefficient is h = 40 W/(m2K) and the absorptivity of the exposed surface is = 0.8. Determine the convective and radiative heat fluxes to the wall at x = 0 in W/m2, if the wall surface temperature is 24C. Assume the exposed wall surface is gray (meaning = ) and the surroundings are much larger than the wall surface.arrow_forwardA large isothermal enclosure containing two small surfaces (surface A and surface B) is shown in the figure. The two surfaces are then irradiated by the enclosure at an equal rate of 10,000 W/m2. Due to the differences in thermal properties of the surfaces, surface A absorbs the incident radiation at a rate of 8800 W/m2 while surface B absorbs the incident radiation at a rate of irradiation at a rate of 1000 W/m2. Find the answer to the following questions under thermodynamic equilibrium condition a) the temperature of each surface,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license