Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.101P

A double-glazed window consists of two panes of glass, each of thickness t = 6 mm . The inside room temperature is T i = 20 ° C with h i = 7.7 W/m 2 K , while the outside temperature is T o = 10 ° C with h o = 25 W/m 2 K . The gap between the glass sheets is of thickness L = 5 mm and is filled with a gas. The glass surfaces may be treated with a low-emissivity coating to reduce their emissivity from ε = 0.95 to ε = 0.05 . Determine the heat flux through the window for case ε 1 = ε 2 = 0.95 , case 2: ε 1 = ε 2 = 0.05 , and case 3: ε 1 = 0.05 , ε 2 = 0.95 . Consider either air or argon of thermal conductivity k Ar = 17.7 × 10 3 W/m K to be within the gap. Radiation heat transfer occurring at the external surfaces of the two glass sheets is negligible, as is free convection between the glass sheets.

Blurred answer
Students have asked these similar questions
Two vessels of different shape and sizes are connected by means of a pipe with a valve. Vessel A has a diameter of 4 ft and the length is 1.8 m at the given pressure gauge of 1476.4 in Hg and temperature of 82°F. Another vessel spherical in shape contains the same gas at 15,000 torr gauge and 18°C. The valve is opened and when the properties have been determined, it is found out that the gauge pressure is 35.7 kgf/cm2 and the temperature is 21°C. If the barometric pressure is 755 mm Hg, find the following: Volume of Vessel A in in3 Pressure at Vessel A in psia Temperature at Vessel A in °R Pressure at Vessel B in psia
Two vessels of different shape and sizes are connected by means of a pipe with a valve. Vessel A has a diameter of 4 ft and the length is 1.8 m at the given pressure gauge of 1476.4 in Hg and temperature of 82°F. Another vessel spherical in shape contains the same gas at 15,000 torr gauge and 18°C. The valve is opened and when the properties have been determined, it is found out that the gauge pressure is 35.7 kgf/cm2 and the temperature is 21°C. If the barometric pressure is 755 mm Hg. Question: What is the diameter of the spherical tank in inches if the gas is carbon dioxide?
A cylindrical vessel with a diameter of 8 inches and 5 feet long contained acetylene at 300 psi gauge and 82°F. After some amount of acetylene was used, the pressure was reduced to 190 psi gauge and the temperature was 74°F. The gas constant of acetylene is 59.35 ft-lb:/lbm-°R. Determine the following: 1. What is the initial mass in Ibm of the acetylene inside the vessel? 2. What proportion in percentage of acetylene was used? 3. What volume in ft would the used acetylene occupy at 30 psig and 80°F?

Chapter 13 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 13 - Consider parallel planes of infinite extent normal...Ch. 13 - Consider the parallel planes of infinite extent...Ch. 13 - Consider two diffuse surfaces A1 and A2 on the...Ch. 13 - As shown in the sketch, consider the disk A1...Ch. 13 - A heat flux gage of 4mm diameter is positioned...Ch. 13 - A circular ice rink 25 m in diameter is enclosed...Ch. 13 - A drying oven consists of a long semicircular duct...Ch. 13 - Consider the arrangement of the three black...Ch. 13 - A long, Vshaped pan is heat treated by suspending...Ch. 13 - Consider coaxial, parallel, black disks separated...Ch. 13 - A tubular healer with a black inner surface of...Ch. 13 - A circular plate of 500-mm diameter is maintained...Ch. 13 - To enhance heat rejection from a spacecraft, an...Ch. 13 - Determine the temperatures of surfaces 1 through 4...Ch. 13 - A cylindrical cavity of diameter D and depth L is...Ch. 13 - In the arrangement shown, the tower disk has a...Ch. 13 - Two plane coaxial disks are separated by a...Ch. 13 - A radiometer views a small target (1) that is...Ch. 13 - A meter to measure the power of a laser beam is...Ch. 13 - The arrangement shown is to be used to calibrate a...Ch. 13 - A long, cylindrical heating element of 20-mm...Ch. 13 - Water flowing through a large number of long,...Ch. 13 - A row of regularly spaced, cylindrical heating...Ch. 13 - A manufacturing process calls for heating long...Ch. 13 - Consider the very long, inclined black surfaces...Ch. 13 - Many products are processed in a manner that...Ch. 13 - Consider two very large parallel plates with...Ch. 13 - A flat-bottomed hole 6 mm in diameter is bored to...Ch. 13 - In Problems 12.20 and 12.25, we estimated the...Ch. 13 - Consider the cavities formed by a cone, cylinder,...Ch. 13 - Consider the attic of a home located in a hot...Ch. 13 - A long, thin-walled horizontal tube 100 mm in...Ch. 13 - A t=5-mm -thick sheet of anodized aluminum is used...Ch. 13 - Consider the spacecraft heat rejection scheme of...Ch. 13 - A very long electrical conductor 10 mm in diameter...Ch. 13 - Liquid oxygen is stored in a thin-walled,...Ch. 13 - Two concentric spheres of diameter D1=0.8m and...Ch. 13 - Determine the steady-stale temperatures of two...Ch. 13 - Consider two large (infinite) parallel planes that...Ch. 13 - Consider two large, diffuse, gray, parallel...Ch. 13 - Heat transfer by radiation occurs between two...Ch. 13 - The end of a cylindrical liquid cryogenic...Ch. 13 - At the bottom of a very large vacuum chamber whose...Ch. 13 - A furnace is located next to a dense array of...Ch. 13 - A cryogenic fluid flows through a tube 20 mm in...Ch. 13 - A diffuse, gray radiation shield of 60mm diameter...Ch. 13 - Consider the three-surface enclosure shown. The...Ch. 13 - Two parallel, aligned disks, 0.4 m in diameter and...Ch. 13 - Coatings applied to long metallic strips are cured...Ch. 13 - A molten aluminum alloy at 900 K is poured into a...Ch. 13 - A long, hemicylindrical (1-m radius) shaped...Ch. 13 - The bottom of a steam-producing still of 200-mm...Ch. 13 - A long cylindrical healer element of diameter...Ch. 13 - A radiative heater consists of a bank of ceramic...Ch. 13 - Consider a long duct constructed with diffuse,...Ch. 13 - A solar collector consists of a long duct through...Ch. 13 - The cylindrical peephole in a furnace wall of...Ch. 13 - A composite wall is comprised of two large plates...Ch. 13 - A small disk of diameter D1=50mm and emissivity...Ch. 13 - Consider a cylindrical cavity of diameter D=100mm...Ch. 13 - Consider a circular furnace that is 0.3 m long and...Ch. 13 - Consider two very large metal parallel plates. The...Ch. 13 - Two convex objects are inside a large vacuum...Ch. 13 - the diffuse, gray, four-surface enclosure with all...Ch. 13 - A cylindrical furnace for heal-treating materials...Ch. 13 - A laboratory oven bas a cubical interior chamber 1...Ch. 13 - A small oven consists of a cubical box of...Ch. 13 - An opaque, diffuse, gray (200mm200mm) plate with...Ch. 13 - A tool for processing silicon waters is housed...Ch. 13 - Consider Problem 6.17. The stationary plate,...Ch. 13 - Most architects know that the ailing of an...Ch. 13 - Boiler tubes exposed to the products of coal...Ch. 13 - Consider two very large parallel plates. The...Ch. 13 - Coated metallic disks are cured by placing them at...Ch. 13 - A double-glazed window consists of two panes of...Ch. 13 - Electrical conductors, in the form of parallel...Ch. 13 - The spectral absorptivity of a large diffuse...Ch. 13 - The cross section of a long circular tube, which...Ch. 13 - Cylindrical pillars similar to those of Problem...Ch. 13 - A row of regularly spaced, cylindrical healing...Ch. 13 - The composite insulation shown, which was...Ch. 13 - Hot coffee is contained in a cylindrical thermos...Ch. 13 - Consider a vertical, double-pane window for the...Ch. 13 - Consider the double-pane window of Problem 9.95,...Ch. 13 - A flat-plate solar collector, consisting of an...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the tube and radiation shield of Problem...Ch. 13 - Consider the flatplate solar collector of Problem...Ch. 13 - The lower side of a 400-mm-diameter disk is heated...Ch. 13 - The surface of a radiation shield facing a black...Ch. 13 - The fire tube of a hot water heater consists of a...Ch. 13 - Consider the conditions of Problem 9.107....Ch. 13 - A special surface coating on a square panel that...Ch. 13 - A long rod heater of diameter D1=10mm and...Ch. 13 - A radiant heater, which is used for surface...Ch. 13 - A steam generator consists of an in-line array of...Ch. 13 - A furnace having a spherical cavity of 0.5-m...Ch. 13 - A gas turbine combustion chamber may be...Ch. 13 - A flue gas at 1-atm total pressure and a...Ch. 13 - A furnace consists of two large parallel plates...Ch. 13 - In an industrial process, products of combustion...Ch. 13 - A grain dryer consists of a long semicircular duct...Ch. 13 - A novel infrared recycler has been proposed for...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license