(a)
Interpretation:
The number of ions that is present in one formula unit of the given salt of
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
(b)
Interpretation:
The number of ions that is present in one formula unit of the given salt of carboxylic acid has to be given.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
(c)
Interpretation:
The number of ions that is present in one formula unit of the given salt of carboxylic acid has to be given.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
(d)
Interpretation:
The number of ions that is present in one formula unit of the given salt of carboxylic acid has to be given.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Organic And Biological Chemistry
- 75.0 grams of an unknown metal was heated to 95.0°C, it was then placed into 150.0 grams of water at23.1°C, when the metal and water reached thermal equilibrium, the temperature was 27.8°C. Calculatethe specific heat of the metal. (Assume that the specific heat of water is 4.18 J/g °C)arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardA 25.0 g sample of water was cooled from 23.9°C to 12.7°C, how much heat was released? (Assume thatthe specific heat of water is 4.18 J/g °C)arrow_forward
- Zeolites: environmental applications.arrow_forward" is The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: :Ö: HO + Bicarbonate is crucial for the control of body pH (for example, blood pH: 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forwardWhich of these is the best use of a volumetric flask? measuring how much liquid it contains delivering a precise amount of liquid to another container holding solutions making solutions of precise concentrationarrow_forward
- You're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume densityarrow_forwardDraw a Lewis structure for each of the following species. Again, assign charges where appropriate. a. H-H¯ b. CH3-CH3 c. CH3+CH3 d. CH3 CH3 e. CH3NH3+CH3NH3 f. CH30-CH3O¯ g. CH2CH2 - h. HC2-(HCC) HC2 (HCC) i. H202×(HOOH) H₂O₂ (HOOH) Nortonarrow_forwardIs molecule 6 an enantiomer?arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning