
Concept explainers
(a)
Interpretation:
The given substance has to be classified as salt of monocarboxylic acid or a salt of dicarboxylic acid.
Concept Introduction:
The name of the
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
(b)
Interpretation:
The given substance has to be classified as salt of monocarboxylic acid or a salt of dicarboxylic acid.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
(c)
Interpretation:
The given substance has to be classified as salt of monocarboxylic acid or a salt of dicarboxylic acid.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
(d)
Interpretation:
The given substance has to be classified as salt of monocarboxylic acid or a salt of dicarboxylic acid.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Organic And Biological Chemistry
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




