
(a)
Interpretation:
Physical state at room temperature for succinic acid has to be given.
Concept Introduction:
Physical property of
(b)
Interpretation:
Physical state at room temperature for octanoic acid has to be given.
Concept Introduction:
Physical property of carboxylic acid is decided by the carbon chain and the functional group. Carboxylic acids are highly polar, as the carboxyl group is more polar. Due to this polar nature, the melting and boiling point are very high. Monocarboxylic acids that are unsubstituted which contains up to nine carbon atoms are present in liquid state. They have very sharp odor. Monocarboxylic acids that have more than ten carbon atoms in an unbranched fashion are waxy solids. They do not have any odor because of low volatility. Similar to this, dicarboxylic acids and aromatic carboxylic acids do not have any odor and they are solids.
(c)
Interpretation:
Physical state at room temperature for pentanoic acid has to be given.
Concept Introduction:
Physical property of carboxylic acid is decided by the carbon chain and the functional group. Carboxylic acids are highly polar, as the carboxyl group is more polar. Due to this polar nature, the melting and boiling point are very high. Monocarboxylic acids that are unsubstituted which contains up to nine carbon atoms are present in liquid state. They have very sharp odor. Monocarboxylic acids that have more than ten carbon atoms in an unbranched fashion are waxy solids. They do not have any odor because of low volatility. Similar to this, dicarboxylic acids and aromatic carboxylic acids do not have any odor and they are solids.
(d)
Interpretation:
Physical state at room temperature for p-chlorobenzoic acid has to be given.
Concept Introduction:
Physical property of carboxylic acid is decided by the carbon chain and the functional group. Carboxylic acids are highly polar, as the carboxyl group is more polar. Due to this polar nature, the melting and boiling point are very high. Monocarboxylic acids that are unsubstituted which contains up to nine carbon atoms are present in liquid state. They have very sharp odor. Monocarboxylic acids that have more than ten carbon atoms in an unbranched fashion are waxy solids. They do not have any odor because of low volatility. Similar to this, dicarboxylic acids and aromatic carboxylic acids do not have any odor and they are solids.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Organic And Biological Chemistry
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER





