Concept explainers
a)
Interpretation:
The change has to be explained when the concentration of the halide is tripled and the concentration of the ethanol is halved by adding diethyl ether as an inert solvent.
Concept introduction:
SN1 reaction:
The alcohol is reaction with acids like hydrochloric acid or hydrobromic acid which yield the corresponding carbocation intermediate, this carbocation intermediate undergoes substitution reaction which yields the corresponding substitution product.
Tertiary alcohols undergo substitution very fast than the secondary alcohols because tertiary carbocation is more stable than the secondary carbocation than the primary carbocation.
Primary alcohol is less stable therefore it won’t undergo SN1substitution reaction.
b)
Interpretation:
The change has to be explained when the concentration of the halide is tripled and the concentration of the ethanol is halved by adding diethyl ether as an inert solvent.
Concept introduction:
SN1 reaction:
The alcohol is reaction with acids like hydrochloric acid or hydrobromic acid which yield the corresponding carbocation intermediate, this carbocation intermediate undergoes substitution reaction which yields the corresponding substitution product.
Tertiary alcohols undergo substitution very fast than the secondary alcohols because tertiary carbocation is more stable than the secondary carbocation than the primary carbocation.
Primary alcohol is less stable therefore it won’t undergo SN1substitution reaction.
Trending nowThis is a popular solution!
Chapter 11 Solutions
Organic Chemistry
- (b) 3-methyl-2-butanol reacts with concentrated sulphuric acid to form 2-methyl-2- butene. Write the mechanism for the reaction.arrow_forwardNonconjugated , -unsaturated ketones, such as 3-cyclohexenone, are in an acid-catalyzed equilibrium with their conjugated , -unsaturated isomers. Propose a mechanism for this isomerization.arrow_forwardThe enamine prepared from acetone and dimethylamine is shown here in its lowest-energy form. (a) What is the geometry and hybridization of the nitrogen atom? (b) What orbital on nitrogen holds the lone pair of electrons? (c) What is the geometric relationship between the p orbitals of the double bond and the nitrogen orbital that holds the lone pair? Why do you think this geometry represents the minimum energy?arrow_forward
- 3-Chloro-2-methylpropene reacts with sodium methoxide in methanol to form 3-methoxy-2-methylpropene. For each of the following changes in the reaction conditions, state whether the reaction rate would increase, decrease, or remain the same. Explain your reasoning. In some cases the identity of the major organic product would be expected to change; in such cases, give the expected major product. (a) the same quantities of reagents are dissolved in half the volume of methanol (b) 3-bromo-2-methylpropene is used in place of 3-chloro-2-methylpropene (c) sodium methanethiolate (CH3SNa) is used in place of of sodium methoxidearrow_forward9. (a) Under certain conditions, the reaction of 0.5 M 1-bromobutane with 1.0 M sodium methoxide forms 1-methoxybutane at a rate of 0.05 mol/L per second. What would be the rate if 0.1 M 1-bromobutane and 2.0 M NaOCH3 were used? (b) Consider the reaction of 1-bromobutane with a large excess of ammonia (NH3). Draw the reactants, the transition state, and the products. Note that the initial product is the salt of an amine (RNH* Br) which is deprotonated by the excess ammonia to give the amine. (c) Show another SN2 reaction using a different combination of an alkoxide and an alkyl bromide that also produces 1-methoxybutane.arrow_forwardGive reasons for the following :(i) Ethyl iodide undergoes SN2 reaction faster than ethyl bromide.(ii) (±) 2-Butanol is optically inactive.(iii) C—X bond length in halobenzene is smaller than C—X bond length in CH3—X.arrow_forward
- 3-Chloro-2-methylpropene reacts with sodium methoxide in methanol to form 3-methoxy-2-methylpropene. For each of the following changes in the reaction conditions, state whether the reaction rate would increase, decrease, or remain the same. Explain your reasoning. In some cases the identity of the major organic product would be expected to change; in such cases, give the expected major product. (a) dimethyl sulfoxide (DMSO) is used in place of methanol (b) methanol is used by itself without sodium methoxide (c) 1-chloro-2,2,-dimethylpropane is used in place of 3-chloro-2-methylpropenearrow_forward2-bromo-2-methylbutane undergoes hydrolysis reaction with water, H2O toform compound W. Compound X and compound Y are produced when 2-bromo-2-methylbutane undergoes elimination reaction with alcoholic ofsodium hydroxide, NaOH. (ii) What is the type of reaction involved in the formation of compound W? (iii) Identify the major product of the elimination reaction between compound Xand compound Y based on Zaitsev’s rule.arrow_forward1) The carbon-oxygen double bond present in aldehydes and ketones is very polar. What does this mean and how does it arise? 2) The carbon-oxygen double bond is readily attacked by nucleophiles like cyanide ions or ammonia. (i) What do you understand by the term nucleophile? (ii) Which part of the carbon-oxygen double bond is attractive to nucleophiles? 3) Why is there a difference between aldehydes and ketones in their response to oxidizing agents such as potassium dichromate(VI) solution acidified with dilute sulfuric acid?arrow_forward
- Draw an approximate reaction-energy diagram showing the curves for the two possible pathways for ionic addition of HBr to 1-methylcyclohexene. (a) Formation of the major product, 1-bromo-1-methylcyclohexane, and (b) formation of the minor product, 1-bromo-2-methylcyclohexane. Point out how these curves show that 1-bromo-1-methylcyclohexane should be formed fasterarrow_forward1. At what position and on what ring would you expect the following substances to undergo electrophilic substitution? (b) CH3 Br lel CH3 2. Rank the compounds in each group according to their reactivity toward electrophilic substitution. (a) Chlorobenzene, o-dichlorobenzene, benzene (b) p-Bromonitrobenzene, nitrobenzene, phenol (c) Fluorobenzene, benzaldehyde, 0-xylene (d) Benzonitrile, p-methylbenzonitrile, p-methoxybenzonitrilearrow_forwardn-Pentanol (CH3CH2CH2CH2CH2OH) and 2-methylbutan-2-ol (CH3CH2C(CH3)2OH) are converted to their corresponding alkyl chorides on being reacted with hydrogen chloride. (a) Write out an equation for each reaction (b) Assign each the appropriate symbol (SN1 or SN2) (c) Write a suitable mechanism for each reactionarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning