Organic Chemistry
9th Edition
ISBN: 9781305080485
Author: John E. McMurry
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.SE, Problem 76AP
Interpretation Introduction
Interpretation:
The explanation has to be given when 1-chlorooctane reaction with acetate ion (CH3CO2-) to give octyl acetate is greatly accelerated by adding a small quantity of iodide ion.
Concept introduction:
Substitution reaction:
The alcohol reaction with acids like hydrochloric acid or hydrobromic acid which yield the corresponding carbocation intermediate, this carbocation intermediate undergoes substitution reaction which yields the corresponding substitution product.
Given information:
The given compound is shown below,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an attempt to prepare propylbenzene, a chemist alkylated benzene with 1-chloropropane and aluminum chloride. However, two isomeric hydrocarbons were obtained in the proportion of 2: 1. What is the main product? How did this come about? Explain showing the mechanism and nomenclature of the reaction compounds
Elimination of HBr from 2-bromobutane affords a mixture of 1-butene and 2-butene. With sodium ethoxide as base, 2-butene
constitutes 81% of the alkene products, but with potassium tert-butoxide, 2-butene constitutes only 67% of the alkene
products. Offer an explanation for this difference.
b) Listed below are several hypothetical nucleophilic substitution reactions.
None is synthetically useful because the product indicated is not formed at an
appreciable rate. In each case provide an explanation for the failure of the
reaction to take place as indicated.
OMe
HO
+ OMe
+ OH
HO
+ CH;
OH
Chapter 11 Solutions
Organic Chemistry
Ch. 11.1 - Prob. 1PCh. 11.2 - Prob. 2PCh. 11.2 - Prob. 3PCh. 11.3 - Prob. 4PCh. 11.3 - Prob. 5PCh. 11.3 - Rank the following compounds in order of their...Ch. 11.3 - Organic solvents like benzene, ether, and...Ch. 11.4 - Prob. 8PCh. 11.4 - Prob. 9PCh. 11.4 - Prob. 10P
Ch. 11.5 - Rank the following substances in order of their...Ch. 11.5 - 3-Bromo-1-butene and 1-bromo-2-butene undergo SN1...Ch. 11.5 - Prob. 13PCh. 11.6 - Review the mechanism of geraniol biosynthesis...Ch. 11.7 - Prob. 15PCh. 11.7 - What alkyl halides might the following alkenes...Ch. 11.8 - Prob. 17PCh. 11.8 - Prob. 18PCh. 11.9 - Prob. 19PCh. 11.12 - Prob. 20PCh. 11.SE - Prob. 21VCCh. 11.SE - From what alkyl bromide was the following alkyl...Ch. 11.SE - Prob. 23VCCh. 11.SE - Prob. 24VCCh. 11.SE - Prob. 25MPCh. 11.SE - Prob. 26MPCh. 11.SE - Prob. 27MPCh. 11.SE - Prob. 28MPCh. 11.SE - Prob. 29MPCh. 11.SE - Prob. 30MPCh. 11.SE - Prob. 31MPCh. 11.SE - Prob. 32MPCh. 11.SE - Metabolism of S-adenosylhomocysteine (Section...Ch. 11.SE - Reaction of iodoethane with CN- yields a small...Ch. 11.SE - One step in the urea cycle for ridding the body of...Ch. 11.SE - Prob. 36MPCh. 11.SE - Prob. 37MPCh. 11.SE - Propose a mechanism for the following reaction, an...Ch. 11.SE - Prob. 39APCh. 11.SE - The following Walden cycle has been carried out....Ch. 11.SE - Prob. 41APCh. 11.SE - Which reactant in each of the following pairs is...Ch. 11.SE - Prob. 43APCh. 11.SE - Prob. 44APCh. 11.SE - Prob. 45APCh. 11.SE - Prob. 46APCh. 11.SE - Prob. 47APCh. 11.SE - Prob. 48APCh. 11.SE - Propose structures for compounds that fit the...Ch. 11.SE - What products would you expect from the reaction...Ch. 11.SE - Prob. 51APCh. 11.SE - Prob. 52APCh. 11.SE - Prob. 53APCh. 11.SE - Prob. 54APCh. 11.SE - Prob. 55APCh. 11.SE - Order each of the following sets of compounds with...Ch. 11.SE - Order each of the following sets of compounds with...Ch. 11.SE - Prob. 58APCh. 11.SE - Prob. 59APCh. 11.SE - Ethers can often be prepared by SN2 reaction of...Ch. 11.SE - Show the stereochemistry of the epoxide (see...Ch. 11.SE - Prob. 62APCh. 11.SE - In addition to not undergoing substitution...Ch. 11.SE - The tosylate of (2R, 3S)-3-phenyl-2-butanol...Ch. 11.SE - Prob. 65APCh. 11.SE - Prob. 66APCh. 11.SE - Prob. 67APCh. 11.SE - Prob. 68APCh. 11.SE - Prob. 69APCh. 11.SE - (S)-2-Butanol slowly racemizes on standing in...Ch. 11.SE - Reaction of HBr with (R)-3-methyl-3-hexanol leads...Ch. 11.SE - Treatment of 1-bromo-2-deuterio-2-phenylethane...Ch. 11.SE - Prob. 73APCh. 11.SE - Prob. 74APCh. 11.SE - In light of your answer to Problem 11-74, explain...Ch. 11.SE - Prob. 76APCh. 11.SE - Compound X is optically inactive and has the...Ch. 11.SE - When a primary alcohol is treated with...Ch. 11.SE - Prob. 79APCh. 11.SE - Amines are converted into alkenes by a two-step...Ch. 11.SE - The antipsychotic drug flupentixol is prepared by...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The reaction of methylpropene with HBr, under radical conditions, gives two intermediates. Propose a mechanism for the formation of the two products. Propose a mechanism for the following reaction and use electronic factors to account for the formation of a major product: CH2 CH2Br N-Bromosuccinimide (NBS) ho, CCI4 Draw the structure of an antioxidant, Vitamin E free radical and use resonance structures o account for its stability.arrow_forwardCH3 Ph3P-CHCH3 H3C H3C Aldehydes and ketones are converted into alkenes by means of a direct nucleophilic addition called the Wittig reaction. In the reaction, a triphenylphosphorine ylide, also called a phosphorane, adds to an aldehyde/ketone to give a four-membered cyclic intermediate called an oxaphosphetane. The oxaphosphetane is not isolated but instead spontaneously decomposes to release triphenylphosphine oxide and an alkene. Ph3P-CHCH3 H3C The ylide is formed by reaction of triphenylphosphine, a good nucleophile, with a primary alkyl halide in an S 2 reaction, followed by deprotonation of the carbon with a strong base, such as butyllithium. The carbonyl carbon and the carbon originally bonded to the halogen become the two carbons with the double bond in the product alkene :0: CH3 Com The real value of the Wittig reaction lies in its ability to yield an alkene of predictable structure, as the C-C bond is precisely where the C=O bond was in the reactant and no isomers (other than…arrow_forwardGive all the monobromination products of 2-methylpropane (or isobutane) in presence of heat or energy. Identify the major product and propose a mechanism leading to the formation of the major product. Provide a reaction in the termination step.arrow_forward
- Please give the main substitution product for each of the following reactions, and indicate the dominant mechanism: (a) 1-bromopropane + NaOCH3 → (b) 3-bromo-3-methylpentane + NaOC2H5 →arrow_forwardDescribe the product formed as a result of the reaction between cyclohexanone and 3-butene-2-one by also writing the mechanism of the reaction.arrow_forwardThe reaction of 1-iodopropane with potassium thiocyanate (KSCN) in certain solvents results in the formation of two isomeric products, propylthiocyanate and propylisothiocyanate (see scheme below), via the SN2 reaction mechanism. Attempts to prepare a similar mixture of these same isomeric products (propylthiocyanate and propylisothiocyanate) starting from 1-propene is illustrated below. Despite the strong acidity of thiocyanic acid (recall pKa = 1.1), this addition reaction does not lead to either of the products indicated. Based on your knowledge of alkene addition reactions, explain this experimental result.arrow_forward
- What organic product would you obtain from reaction of 1-pentanol with CrO3, H2O, H2SO4?arrow_forwardThe nitro groups on the benzene ring in the reactant serve two purposes.One is to let you know what atoms in the reactant correspond to what atomsin the product. But what role do the nitro groups play electronically – whywould the reaction be much slower if these nitro groups weren’t attached tothose benzene carbons? Draw any relevant structures to support youranswer.arrow_forwardThe following compounds are given to you:2-Bromopentane, 2-Bromo-2-methylbutane, 1-Bromopentane(i) Write the compound which is most reactive towards SN2 reaction.(ii) Write the compound which is optically active.(iii) Write the compound which is most reactive towards P-elimination reaction.arrow_forward
- CH3 Br,/FeBr3 C3H;BrO 5 Using resonance structures, justify whether the acetyl group of compound 5 will direct the bromination reaction to the meta or ortho/para positions.arrow_forwardReaction of this bicycloalkene with bromine in carbon tetrachloride gives a trans dibro- mide. In both (a) and (b), the bromine atoms are trans to each other. However, only one of these products is formed. CH3 CH3 CH3 Br Br CH,Cl, + Br2 or Br Br (a) (b) Which trans dibromide is formed? How do you account for the fact that it is formed to the exclusion of the other trans dibromide?arrow_forwardA reaction of an unknown alkene with MCPBA in dichloromethane followed by work-up with H2O/H+ yielded, as the major product, a racemic mixture of (2S, 3S) and (2R, 3R)-3-methylpentan- 2,3-diol. What is the specific structure of the alkene used in the reaction? O 2,3-dimethylbut-2-ene O (Z)-3-methylpent-2-ene O none of the above O 2-methylpent-2-ene O (E)-3-methylpent- 2-enearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Coenzymes and cofactors; Author: CH15 SWAYAM Prabha IIT Madras;https://www.youtube.com/watch?v=bubY2Nm7hVM;License: Standard YouTube License, CC-BY
Aromaticity and Huckel's Rule; Author: Professor Dave Explains;https://www.youtube.com/watch?v=7-BguH4_WBQ;License: Standard Youtube License