Concept explainers
(a)
Interpretation:
The approximate enthalpy change for the reaction of molecular hydrogen and molecular oxygen to produce 2 moles water vapor has to be determined.
Concept Introduction:
The
The equation that describes the bond dissociation for
Bond energies are always endothermic and have a positive sign. It takes energy to break a bond.
The enthalpy of reaction can be determined by the sum of the bond dissociation energies of all the reactants minus the sum of the bond dissociation energies of all products present in
The equation to calculate enthalpy of reaction is as follows:
Negative sign in the equation depicts that bonds will form in the products. It is an exothermic process, so the energy charge is the negative of bond energy.
(b)
Interpretation:
The approximate enthalpy change for the reaction of carbon monoxide and molecular oxygen to form 2 mol of carbon dioxide has to be determined.
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemistry: Principles and Practice
- hat is the enthalpy change for a process? Is enthalpy a state function? In what experimental apparatus are enthalpy changes measured?arrow_forwardUsing the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulfur double bond in CS2.arrow_forwardUsing the bond dissociation enthalpies in Table 8.8, estimate the enthalpy of combustion of gaseous methane, CH4, to give water vapor and carbon dioxide gas.arrow_forward
- With reference to the “Chemistry Put to Work” box on explosives, (a) use bond enthalpies to estimate the enthalpy change for the explosion of 1.00 g of nitroglycerin. (b) Write a balanced equation for the decomposition of TNT. Assume that, upon explosion, TNT decomposes into N2(g), CO2(g), H2O(g), and C(s).arrow_forwardAcetylene (C2H2) and nitrogen (N2) both contain a triplebond, but they differ greatly in their chemical properties.(a) Write the Lewis structures for the two substances. (b) By referring to Appendix C, look up the enthalpies of formationof acetylene and nitrogen. Which compound is more stable?(c) Write balanced chemical equations for the completeoxidation of N2 to form N2O5(g) and of acetylene to formCO2(g) and H2O(g). (d) Calculate the enthalpy of oxidationper mole for N2 and for C2H2 (the enthalpy of formationof N2O5(g) is 11.30 kJ/mol). (e) Both N2 and C2H2 possesstriple bonds with quite high bond enthalpies (Table 8.3).Calculate the enthalpy of hydrogenation per mole for bothcompounds: acetylene plus H2 to make methane, CH4;nitrogen plus H2 to make ammonia, NH3.arrow_forwardConsider the following compounds: BeCl 2 , MgBr 2 , and SrBr 2 . Answer the following questions based on expected periodic trends: (a) Which is expected to have the shortest ionic bonds? (b) Which is expected to have the highest lattice energy? (c) Which is expected to have the lowest melting point?arrow_forward
- An elemental analysis of a hydrocarbon, which contains only carbon and hydrogen, shows the mass%: element mass% carbon 92.26 hydrogen 7.743 (A) * Determine the empirical formula of the hydrocarbon. (B) The compound has a molar mass of 26.04 g/mol. Determine its molecular formula. (C, Draw the Lewis structure of the molecular compound. Count the total number of sigma bonds and pi bonds each, present in the molecule. (D, What is the hybridization of carbon in the molecule? Explain.arrow_forwardConsider the following compounds: CaCl 2 , CaI 2 , and MgCl 2 . Answer the following questions based on expected periodic trends: (a) Which is expected to have t he shortest ionic bonds? (b) Which is expected to have the highest lattice energy? (c) Which is expected to have the lowest melting point?arrow_forwardAnswer the following questions that relate to the chemistry of nitrogen. (a) Two nitrogen atoms combine to form a nitrogen molecule, as represented by the following equation. 2 N(g) ® N2(g) Using the table of average bond energies below, determine the enthalpy change, AH, for the reaction. Average Bond Energy (k) mol-1) Bond N-N 160 N=N 420 N°N 950 (b) The reaction between nitrogen and hydrogen to form ammonia is represented below. N2(g) + 3 H2(g)® 2 NH3(g) AH° = -92.2 kJ Predict the sign of the standard entropy change, AS', for the reaction. Justify your answer. (C) The value of AG° for the reaction represented in part (b) is negative at low temperatures but positive at high temperatures. Explain.arrow_forward
- Cyanamide is a compound containing two hydrogen atoms and some amount of C and N. There are a total of 5 atoms in the compound. The products of combustion were found to be CO2, NO2, and H2O. If the enthalpy of combustion for cyanamide is – 671.9 kJ/mol and the enthalpy of formation is 58.8 kJ/mol, what is the chemical formula for cyanamide? ( ΔfH (CO2) = - 393.51 kJ/mole; ΔfH (NO2) = + 33.10 kJ/mole; ΔfH (H2O) = - 241.826 kJ/mole)arrow_forward5. For the reaction H2(g) + C2H4(g) C2H6(g) (a) Estimate the enthalpy of reaction, using the bond enthalpy values. (b) Calculate the enthalpy of reaction, using standard enthalpies of formation. (AH? for H2, C2H4, and C2H6 are 0 kJ/mol, 52.3 kJ/mol, and -84.7 kJ/mol, respectively.)arrow_forwardOne of the following pictures(Figure 1) represents NaCl and one represents MgO. Which is which? (a) is NaCl and (b) is MgO (b) is NaCl and (a) is MgO Which has the larger lattice energy? NaCl MgOarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning