Concept explainers
Interpretation:
The approximate enthalpy change for the following reaction has to be determined.
Concept Introduction:
The
The equation that describes the bond dissociation for
Bond energies are always endothermic and have a positive sign. It takes energy to break a bond.
The enthalpy of reaction can be determined by the sum of the bond dissociation energies of all the reactants minus the sum of the bond dissociation energies of all products present in
The equation to calculate enthalpy of reaction is as follows:
Negative sign in the equation depicts that bonds will form in the products. It is an exothermic process, so the energy charge is the negative of bond energy.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemistry: Principles and Practice
- The standard enthalpy of formation for NO(g) is 90. kJ/mol. Use this and the values for the O 9 O and N N bond energies to estimate the bond strength in NO.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardAlthough nitrogen trifluoride (NF3) is a thermally stable compound, nitrogen triiodide (NI3) is known to be a highly explosive material. NI3 can be synthesized according to the equation BN(s) + 3IF(g) BF3(g) + NI3(g) a. What is the enthalpy of formation for NI3(s) given the enthalpy of reaction (307 kJ) and the enthalpies of formation for BN(s) (254 kJ/mol), IF(g) (96 kJ/mol), and BF3(g) (1136 kJ/mol)? b. It is reported that when the synthesis of NI3 is conducted using 4 moles of IF for every 1 mole of BN, one of the by-products isolated is [IF2]+[BF4]. What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?arrow_forward
- Using the standard enthalpy of formation data in Appendix G, show how the standard enthalpy of formation of HCl(g) can be used to determine the bond energy.arrow_forwardUsing the standard enthalpy of formation data in Appendix G. determine which bond is stronger: the PCl bond in PCl3(g) or in PCl5(g)?arrow_forwardCyanamide is a compound containing two hydrogen atoms and some amount of C and N. There are a total of 5 atoms in the compound. The products of combustion were found to be CO2, NO2, and H2O. If the enthalpy of combustion for cyanamide is – 671.9 kJ/mol and the enthalpy of formation is 58.8 kJ/mol, what is the chemical formula for cyanamide? ( ΔfH (CO2) = - 393.51 kJ/mole; ΔfH (NO2) = + 33.10 kJ/mole; ΔfH (H2O) = - 241.826 kJ/mole)arrow_forward
- 10. You're preparing for a camping trip. you see two different stoves you can pack for your trip to do all your cooking. Which fuel would you prefer to carry? One stove uses fuel propane. The other stove uses naphtha (hexane) fuel. Start by writing a balanced combustion equation for both of these reactions. Use either standard enthalpies of formation or bond energies to determine the enthalpy changes for the combustion of these two fuels. Then suggest which stove, the one that uses propane or the one that uses naphtha, would you recommend to pack for your camping trip? Explain. (You may need more space for your response).arrow_forwardCarbon naturally occurs in two forms: diamond and graphite. Why do these two forms have very different properties? The key difference is that diamonds have other elements bonded within their structure. The differences are explained by the number of covalent and ionic bonds within each substance. The differences are explained by the density: graphite is very high and diamond is much lower. The differences are explained by how the carbon atoms within each substance are covalently bonded together.arrow_forwardusing the delta H reaction equation and standard enthalpies of formation, calculate the enthalpy change of the decomposition of hydrogen peroxide into water that occurs in the presence of lightarrow_forward
- Write the law for this reaction and explain how it is determined SO2CL2 ->SO2 + CL2arrow_forwardUse average bond energies together with the standard enthalpy of formation of C( g) (718.4 kJ/mol) to estimate the standard enthalpy of formation of gaseous benzene, C6H6( g). (Remember that average bond energies apply to the gas phase only.) Compare the value you obtain using average bond energies to the actual standard enthalpy of formation of gaseous benzene,82.9 kJ/mol. What does the difference between these two values tell you about the stability of benzene?arrow_forwardWrite the steps (reactions) for the Born-Haber cycle for MgCl2(s). Use the Born-Haber cycle to calculate the lattice energy of MgCl2(s). Some useful data to work with: For Mg: ΔΔHsub = 147 kJ/mol, IE1 and IE2 are 738 kJ/mol and 1450 kJ/mol, respectively. For chlorine: Bond energy = 243 kJ/mol, EA1 = -349 kJ/mol, respectively. The enthalpy of formation of magnesium chloride is -748.8 kJ/mol.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning