
Concept explainers
Interpretation:
Whether the connectivity of
Concept Introduction:
Covalent bond is defined as a bond is formed from mutual sharing of electrons between atoms. Lewis structures are representations of the covalent bond. In this, Lewis symbols show how the valence electrons are present in the molecule.
The steps to draw the Lewis structure of the molecule are as follows:
Step 1: Find the central atom and place the other atoms around it. The atom in a compound that has the lowest group number or lowest electronegativity considered as the central atom.
Step 2: Estimate the total number of valence electrons.
Step 3: Connect the other atoms around the central atoms to the central atom with a single bond and lower the value of valence electrons by 2 of every single bond.
Step 4: Allocate the remaining electrons in pairs so that each atom can get 8 electrons.
The formula to calculate formal charge of the atom is as follows:
The different structures can be drawn for the same molecule. Structures that minimize the amount of formal charge found on each atom are more stable than structures that place large amounts of formal charge on atoms.
The structures that have adjacent atoms with formal charges of the same sign are less stable. Lewis structures that show the smallest formal charges are stable. The structure that has negative formal charges on the more electronegative atoms are favored.

Explanation of Solution
For structure
The given compound is made up of carbon, hydrogen, and nitrogen atoms.
The rules applied to obtain the Lewis structure of
1. Write the skeleton structure.
There are three hydrogen atom, one carbon atom and a nitrogen atom. Therefore, 4 bonds are formed.
2. Calculate the total number of valence electrons.
The valence electron of nitrogen is calculated as follows:
The valence electron of carbon is calculated as follows:
The valence electron of hydrogen is calculated as follows:
The total number of valence electrons is calculated as follows:
3. Calculate the remaining electrons that are not used in skeleton structure.
The skeleton structure has 4 bonds. Therefore 8 electrons are used in bonds.
The remaining electrons are calculated as follows:
4 To obey the octet rule, carbon atom needs 2 electrons and nitrogen atom needs 4 electrons.
5. Satisfy the octet rule.
There are 4 remaining electrons. Multiple bonds can be formed. In this compound, an additional bond is needed to complete the structure. Also, remaining electrons are placed as lone pairs on atoms to satisfy octet.
The Lewis structure of
6. The Lewis structure is finished except for formal charges.
7. The formal charge on an atom in this Lewis structure can be calculated from the equation written as follows:
The formal charge on nitrogen atom is calculated as follows:
Substitute 5 for number of valence electrons, 2 for number of lone pairs and 6 for number of shared electrons in equation (1).
The formal charge on first hydrogen atom is calculated as follows:
Substitute 1 for number of valence electrons, 0 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on second hydrogen atom is calculated as follows:
Substitute 1 for number of valence electrons, 0 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on third hydrogen atom is calculated as follows:
Substitute 1 for number of valence electrons, 0 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on carbon atom is calculated as follows:
Substitute 4 for number of valence electrons, 0 for number of lone pairs and 8 for number of shared electrons in equation (1).
In this Lewis structure, nitrogen, hydrogen and oxygen atom has formal charge 0.
The Lewis structure made from
For structure
The given compound is made up of carbon, hydrogen, and nitrogen molecule.
The rules applied to obtain the Lewis structure of
1. Write the skeleton structure.
There are three hydrogen atom, one carbon atom, and nitrogen atom. Therefore, 4 bonds are formed.
2. Calculate the total number of valence electrons.
The valence electron of nitrogen is calculated as follows:
The valence electron of carbon is calculated as follows:
The valence electron of hydrogen is calculated as follows:
The total number of valence electrons is calculated as follows:
3. Calculate the remaining electrons that are not used in skeleton structure.
The skeleton structure has 4 bonds. Therefore 8electrons are used in bonds.
The remaining electrons are calculated as follows:
4 To obey the octet rule, carbon atom needs 2 electrons and nitrogen atom needs 4 electrons.
5. Satisfy the octet rule.
There are 4 remaining electrons. Multiple bonds can be formed. In this compound, an additional bond is needed to complete the structure. Also, remaining electrons are placed as lone pairs on atoms to satisfy octet.
The Lewis structure of
6. The Lewis structure is finished except for formal charges.
7. The formal charge on an atom in this Lewis structure can be calculated from the equation written as follows:
The formal charge on nitrogen atom is calculated as follows:
Substitute 5 for number of valence electrons, 2 for number of lone pairs and 6 for number of shared electrons in equation (1).
The formal charge on first hydrogen atom is calculated as follows:
Substitute 1 for number of valence electrons, 0 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on second hydrogen atom is calculated as follows:
Substitute 1 for number of valence electrons, 0 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on third hydrogen atom is calculated as follows:
Substitute 1 for number of valence electrons 0 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on carbon atom is calculated as follows:
Substitute 4 for number of valence electrons, 0 for number of lone pairs and 8 for number of shared electrons in equation (1).
In this Lewis structure, nitrogen, hydrogen and oxygen atom has formal charge 0.
The Lewis structure made from
The
Hence,
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry: Principles and Practice
- OA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forwardDon't used hand raitingarrow_forwardQuizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forward
- Q4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution, respectively. F CI Br | Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to have a reasonable yield of product. NH2 Br Br Br .OH Brarrow_forwardClassify each molecule as optically active or inactive. Determine the configuration at each H соон Chirality center OH 애 He OH H3C Ноос H H COOH A K B.arrow_forwardQ1: Rank the relative nucleophilicity of the following species in ethanol. CH3O¯, CH3OH, CH3COO, CH3COOH, CH3S Q2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning





