
Concept explainers
(a)
Interpretation:
The Lewis structure of
Concept Introduction:
A covalent bond is a bond that results from the mutual sharing of electrons between atoms. Lewis structures are representations of the covalent bond. In this, Lewis symbols show how the valence electrons are present in the molecule.
The steps to draw the Lewis structure of the molecule are as follows:
Step 1: Find the central atom and place the other atoms around it. The atom in a compound that has the lowest group number or lowest electronegativity considered as the central atom.
Step 2: Estimate the total number of valence electrons.
Step 3: Connect the other atoms around the central atoms to the central atom with a single bond and lower the value of valence electrons by 2 of every single bond.
Step 4: Allocate the remaining electrons in pairs so that each atom can get 8 electrons.
The formula to calculate formal charge of the atom is as follows:
(a)

Answer to Problem 9.57QE
The Lewis structure of
Explanation of Solution
The given compound is made up of oxygen, and nitrogen atoms.
The rules applied to obtain the Lewis structure of
1. Write the skeleton structure.
In the skeleton structure, two bonds are formed.
2. Calculate the total number of valence electrons.
The valence electron of oxygen is calculated as follows:
The valence electron of nitrogen is calculated as follows:
Also, the structure has charge of
The total number of valence electrons is calculated as follows:
3. Calculate the remaining electrons that are not used in skeleton structure.
The skeleton structure has two bonds. Therefore four electrons are used in bonds.
The remaining electrons are calculated as follows:
4 To obey the octet rule, the oxygen atom needs six electrons and nitrogen atom needs 6 electrons.
5. Satisfy the octet rule.
There are ten remaining electrons. Multiple bonds can be formed. In this compound, an additional bond is needed to complete the structure. Also, remaining electrons are placed as lone pairs on nitrogen and oxygen atom to satisfy octet.
The Lewis structure of
6. The Lewis structure is finished except for formal charges.
7. The formal charge on an atom in this Lewis structure can be calculated from the equation written as follows:
The formal charge on nitrogen atom is calculated as follows:
Substitute 5 for number of valence electrons, 2 for number of lone pairs and 6 for number of shared electrons in equation (1).
The formal charge on first oxygen atom is calculated as follows:
Substitute 6 for number of valence electrons, 6 for number of lone pairs and 2 for number of shared electrons in equation (1).
The formal charge on second oxygen atom is calculated as follows:
Substitute 6 for number of valence electrons, 6 for number of lone pairs and 2 for number of shared electrons in equation (1).
In this Lewis structure, nitrogen has formal charge 0. First oxygen atom has formal charge
The Lewis structure made from
(b)
Interpretation:
The Lewis structure of
Concept Introduction:
Refer to part (a)
(b)

Answer to Problem 9.57QE
The Lewis structure made of
Explanation of Solution
The given compound is made up of oxygen, sulfur, and carbon atoms.
The rules applied to obtain the Lewis structure of
1. Write the skeleton structure.
There is one sulfur atom, one oxygen atom and carbon is place as central atom. Therefore, two bonds are formed between carbon, sulfur and oxygen atom.
2. Calculate the total number of valence electrons.
The valence electron of oxygen is calculated as follows:
The valence electron of sulfur is calculated as follows:
The total number of valence electrons is calculated as follows:
3. Calculate the remaining electrons that are not used in skeleton structure.
The skeleton structure has two bonds. Therefore four electrons are used in bonds. The remaining electrons are calculated as follows:
4 To obey the octet rule, the oxygen atom needs six electrons, carbon atom needs 4electrons and sulfur atom needs 6 electrons.
5. Satisfy the octet rule.
There are 12 remaining electrons. Multiple bonds can be formed. In this compound, an additional bond is needed to complete the structure. Also, remaining electrons are placed as lone pairs on sulfur and oxygen atom to satisfy octet.
The Lewis structure of
6. The Lewis structure is finished except for formal charges.
7. The formal charge on an atom in this Lewis structure can be calculated from the equation written as follows:
The formal charge on carbon atom is calculated as follows:
Substitute 4 for number of valence electrons, 0 for number of lone pairs and 8 for number of shared electrons in equation (1).
The formal charge on oxygen atom is calculated as follows:
Substitute 6 for number of valence electrons, 4 for number of lone pairs and 4 for number of shared electrons in equation (1).
The formal charge on sulfur atom is calculated as follows:
Substitute 6 for number of valence electrons, 4 for number of lone pairs and 4 for number of shared electrons in equation (1).
In this Lewis structure, nitrogen has formal charge 0. Oxygen atom has formal charge0 and sulfur atom has formal charge 0.
The Lewis structure of
(c)
Interpretation:
The Lewis structure of
Concept Introduction:
Refer to part (a)
(c)

Answer to Problem 9.57QE
The Lewis structure made from
Explanation of Solution
The given compound is made up of oxygen, and sulfur atoms.
The rules applied to obtain the Lewis structure of
1. Write the skeleton structure.
There are one sulfur atom and three oxygen atoms. Therefore, three bonds are formed between sulfur and each oxygen atoms.
2. Calculate the total number of valence electrons.
The valence electron of oxygen is calculated as follows:
The valence electron of sulfur is calculated as follows:
The total number of valence electrons is calculated as follows:
3. Calculate the remaining electrons that are not used in skeleton structure.
The skeleton structure has three bonds. Therefore, six electrons are used in bonds.
The remaining electrons are calculated as follows:
4 To obey the octet rule, the oxygen atom needs six electrons, carbon atom needs 4el and sulfur atom needs 6 electrons.
5. Satisfy the octet rule.
There are 18 remaining electrons. Multiple bonds can be formed. In this compound, an additional bond is needed to complete the structure. Also, remaining electrons are placed as lone pairs on oxygen atom to satisfy octet.
The Lewis structure of
6. The Lewis structure is finished except for formal charges.
7. The formal charge on an atom in this Lewis structure can be calculated from the equation written as follows:
The formal charge on sulfur atom is calculated as follows:
Substitute 6 for number of valence electrons, 0 for number of lone pairs and 12 for number of shared electrons in equation (1).
The formal charge on first oxygen atom is calculated as follows:
Substitute 6 for number of valence electrons, 4 for number of lone pairs and 4 for number of shared electrons in equation (1).
The formal charge on second oxygen atom is calculated as follows:
Substitute 6 for number of valence electrons, 4 for number of lone pairs and 4 for number of shared electrons in equation (1).
The formal charge on the third oxygen atom is calculated as follows:
Substitute 6 for number of valence electrons, 4 for number of lone pairs and 4 for number of shared electrons in equation (1).
In this Lewis structure, sulfur has formal charge 0. All oxygen atoms have formal charge 0.
The Lewis structure made from
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry: Principles and Practice
- Complete the mechanism for the E1 reaction below by following the directions written above each of the five boxes. Be sure to include lone pair electrons and nonzero formal charges. 2nd attempt 1 Provide the missing curved arrow notation. E+ RUDDA 1st attempt Feedback See Periodic Table See Hint Iir See Periodic Table See Hintarrow_forwardHeating an alcohol in the presence of sulfuric or phosphoric acid will cause a dehydration to occur: the removal of the elements of water from a molecule, forming an alkene. The reaction usually follows an E1 mechanism. The SN1 pathway is suppressed by using a strong acid whose conjugate base is a poor nucleophile. Further, heating the reaction mixture causes a greater increase in the rate of E1 compared to the rate of Sy1. 3rd attempt h Draw curved arrow(s) to show how the alcohol reacts with phosphoric acid. TH © 1 0 0 +1% # 2nd attempt Feedback H Ju See Periodic Table See Hint H Jud See Periodic Table See Hintarrow_forwardPart 2 (0.5 point) 0- Draw the major organic product with the correct geometry. 10 1: 70000 х く 1st attempt Part 1 (0.5 point) Feedback Please draw all four bonds at chiral centers. P See Periodic Table See Hintarrow_forward
- Heating an alcohol in the presence of sulfuric or phosphoric acid will cause a dehydration to occur: the removal of the elements of water from a molecule, forming an alkene. The reaction usually follows an E1 mechanism. The SN1 pathway is suppressed by using a strong acid whose conjugate base is a poor nucleophile. Further, heating the reaction mixture causes a greater increase in the rate of E1 compared to the rate of S№1. 2nd attempt 0 See Periodic Table See Hint Draw the organic intermediate from the first step (no byproducts) and draw curved arrow(s) to show how it reacts. TH +11: 1st attempt Feedback H H H C F F See Periodic Table See Hintarrow_forwardThis molecule undergoes an E1 mechanism when stirred in methanol. 3rd attempt CH₂OH CH₂OH 6148 O See Periodic Table. See Hint Draw 3 chemical species including formal charges and lone pairs of electrons. Add the missing curved arrow notation. H N O O SA 3 Br Iarrow_forwardComplete the mechanism for the E1 reaction below by following the directions written above each of the five boxes. Be sure to include lone pair electrons and nonzero formal charges. 1st attempt Y 0 + Provide the missing curved arrow notation. 01: See Periodic Table See Hint H C Br Iarrow_forward
- Please help answer number 2. Thanks in advance.arrow_forwardHow do I explain this? Thank you!arrow_forwardWhen an unknown amine reacts with an unknown acid chloride, an amide with a molecular mass of 163 g/mol (M* = 163 m/z) is formed. In the infrared spectrum, important absorptions appear at 1661, 750 and 690 cm. The 13C NMR and DEPT spectra are provided. Draw the structure of the product as the resonance contributor lacking any formal charges. 13C NMR DEPT 90 200 160 120 80 40 0 200 160 120 80 40 0 DEPT 135 T 200 160 120 80 40 0 Draw the unknown amide. Select Dow Templates More Fragearrow_forward
- Identify the unknown compound from its IR and proton NMR spectra. C4H6O: 'H NMR: 82.43 (1H, t, J = 2 Hz); 8 3.41 (3H, s); 8 4.10 (2H, d, J = 2 Hz) IR: 2125, 3300 cm¹ The C4H6O compound liberates a gas when treated with C2H5 MgBr. Draw the unknown compound. Select Draw с H Templates Morearrow_forwardPlease help with number 6 I got a negative number could that be right?arrow_forward1,4-Dimethyl-1,3-cyclohexadiene can undergo 1,2- or 1,4-addition with hydrogen halides. (a) 1,2-Addition i. Draw the carbocation intermediate(s) formed during the 1,2-addition of hydrobromic acid to 1,4-dimethyl-1,3-cyclohexadiene. ii. What is the major 1,2-addition product formed during the reaction in (i)? (b) 1,4-Addition i. Draw the carbocation intermediate(s) formed during the 1,4-addition of hydrobromic acid to 1,4-dimethyl-1,3-cyclohexadiene. ii. What is the major 1,4-addition product formed from the reaction in (i)? (c) What is the kinetic product from the reaction of one mole of hydrobromic acid with 1,4-dimethyl-1,3-cyclohexadiene? Explain your reasoning. (d) What is the thermodynamic product from the reaction of one mole of hydrobro-mic acid with 1,4-dimethyl-1,3-cyclohexadiene? Explain your reasoning. (e) What major product will result when 1,4-dimethyl-1,3-cyclohexadiene is treated with one mole of hydrobromic acid at - 78 deg * C ? Explain your reasoning.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





