(a)
To Analyze: The greatest number of minutes that could be in a space hour.
(a)

Answer to Problem 49E
25 hours
Explanation of Solution
Given: In the future, scientists may want to make a unit of time that is convenient for people living on both Earth and Mars. The new unit of time, called the space-hour, should divide evenly into the number of minutes in each planet’s day. Under the current Earth definition of minutes, Earth has 1440 minutes per day, and mars has approximately 1480 minutes per day.
In one hour is 60 minutes.
For Earth
So, Time in space-hour
For Mars
So, Time in space-hour
On mars number of minutes in space-hour is greater than Earth.
(b)
To Find: The space-hours on Earth and Mars.
(b)

Answer to Problem 49E
Earth
Mars
Explanation of Solution
Given: In the future, scientists may want to make a unit of time that is convenient for people living on both Earth and Mars. The new unit of time, called the space-hour, should divide evenly into the number of minutes in each planet’s day. Under the current Earth definition of minutes, Earth has 1440 minutes per day, and mars has approximately 1480 minutes per day.
In one hour is 60 minutes.
For Earth
So, Time in space-hour
For Mars
So, Time in space-hour
(C)
To find: The time travels from Earth to Mars.
(C)

Answer to Problem 49E
5145 hours
Explanation of Solution
Given: In the future, scientists may want to make a unit of time that is convenient for people living on both Earth and Mars. The new unit of time, called the space-hour, should divide evenly into the number of minutes in each planet’s day. Under the current Earth definition of minutes, Earth has 1440 minutes per day, and mars has approximately 1480 minutes per day.
A spacecraft that uses current technology can take 210 days to travel from Earth to Mars.
First find the mean of space-hours of both Earth and Mars.
The average of space-hour is 24.5 hour per day.
Total time to travel from Earth to Mars in 210 days.
Now convert into space-hours
In 1 day space−hour = 24.5 hours
In 210 days space-hours
Chapter 4 Solutions
Holt Mcdougal Larson Pre-algebra: Student Edition 2012
Additional Math Textbook Solutions
Intro Stats, Books a la Carte Edition (5th Edition)
College Algebra (7th Edition)
Pre-Algebra Student Edition
Thinking Mathematically (6th Edition)
Elementary Statistics
A First Course in Probability (10th Edition)
- For each graph below, state whether it represents a function. Graph 1 24y Graph 2 Graph 3 4 2 -8 -6 -4 -2 -2 2 4 6 Function? ○ Yes ○ No ○ Yes ○ No Graph 4 Graph 5 8 Function? Yes No Yes No -2. ○ Yes ○ No Graph 6 4 + 2 4 -8 -6 -4 -2 2 4 6 8 Yes -4++ Noarrow_forwardPractice k Help ises A 96 Anewer The probability that you get a sum of at least 10 is Determine the number of ways that the specified event can occur when two number cubes are rolled. 1. Getting a sum of 9 or 10 3. Getting a sum less than 5 2. Getting a sum of 6 or 7 4. Getting a sum that is odd Tell whether you would use the addition principle or the multiplication principle to determine the total number of possible outcomes for the situation described. 5. Rolling three number cubes 6. Getting a sum of 10 or 12 after rolling three number cubes A set of playing cards contains four groups of cards designated by color (black, red, yellow, and green) with cards numbered from 1 to 14 in each group. Determine the number of ways that the specified event can occur when a card is drawn from the set. 7. Drawing a 13 or 14 9. Drawing a number less than 4 8. Drawing a yellow or green card 10. Drawing a black, red, or green car The spinner is divided into equal parts. Find the specified…arrow_forwardAnswer the questionsarrow_forward
- Solve the problems on the imagearrow_forwardAsked this question and got a wrong answer previously: Third, show that v3 = (−√3, −3, 3)⊤ is an eigenvector of M3 . Also here find the correspondingeigenvalue λ3 . Just from looking at M3 and its components, can you say something about the remaining twoeigenvalues? If so, what would you say?arrow_forwardDetermine whether the inverse of f(x)=x^4+2 is a function. Then, find the inverse.arrow_forward
- The 173 acellus.com StudentFunctions inter ooks 24-25/08 R Mastery Connect ac ?ClassiD-952638111# Introduction - Surface Area of Composite Figures 3 cm 3 cm 8 cm 8 cm Find the surface area of the composite figure. 2 SA = [?] cm² 7 cm REMEMBER! Exclude areas where complex shapes touch. 7 cm 12 cm 10 cm might ©2003-2025 International Academy of Science. All Rights Reserved. Enterarrow_forwardYou are given a plane Π in R3 defined by two vectors, p1 and p2, and a subspace W in R3 spanned by twovectors, w1 and w2. Your task is to project the plane Π onto the subspace W.First, answer the question of what the projection matrix is that projects onto the subspace W and how toapply it to find the desired projection. Second, approach the task in a different way by using the Gram-Schmidtmethod to find an orthonormal basis for subspace W, before then using the resulting basis vectors for theprojection. Last, compare the results obtained from both methodsarrow_forwardPlane II is spanned by the vectors: - (2) · P² - (4) P1=2 P21 3 Subspace W is spanned by the vectors: 2 W1 - (9) · 1 W2 1 = (³)arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





