Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 9Q
Light travels along the length of a 1500-nm-long nanostructure. When a peak of the wave is at one end of the nanostructure, is there a peak or a valley at the other end if the wavelength is (a) 500 nm and (b) 1000 nm?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light travels along the length of a 1500-nm-long nanostructure. When a peak of the wave is at one end of the nanostructure, is there a peak or a valley at the other end if the wavelength is (a) 500 nm and (b) 1000 nm?
In a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell
in 17.0 ns. When a slab of glass 0.840 m thick is placed in the light beam, with the
beam incident along the normal to the parallel faces of the slab, it takes the light
21.2 ns to travel from the laser to the photocell. What is the wavelength of the light
in the glass?
A laser beam at a wavelength of 1.11 μm is coupled into an optic fiber, resulting in 138.2 mW of light inside the fiber initially. The fiber is 4.75 km long and has an absorption coefficienct of 1.562 dB/km. What light power, in mW, is at the end of the fiber?
Chapter 35 Solutions
Fundamentals of Physics Extended
Ch. 35 - Does the spacing between fringes in a two-slit...Ch. 35 - a If you move from one bright fringe in a two-slit...Ch. 35 - Figure 35-22 shows two light rays that are...Ch. 35 - In Fig. 35-23, three pulses of lighta, b, and cof...Ch. 35 - Is there an interference maximum, a minimum, an...Ch. 35 - Figure 35-24a gives intensity I verus position x...Ch. 35 - Figure 35-25 shows two sources S1 and S2 that emit...Ch. 35 - Figure 35-26 shows two rays of light, of...Ch. 35 - Light travels along the length of a 1500-nm-long...Ch. 35 - Figure 35-27a shows the cross section of a...
Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
17. Show how you would modify the synthesis given in the previous problem to synthesize the following drugs:
...
Organic Chemistry
In humans, hemophilia A (OMIM 306700) is an X-linked recessive disorder that affects the gene for factor VIII p...
Genetic Analysis: An Integrated Approach (3rd Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
What is a bone scan and how is it used clinically?
Principles of Anatomy and Physiology
Why was Whler astonished to find he had made urea?
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- X-rays have a wavelength small enough to image individual atoms, but are challenging to detect because of their typical frequency. Suppose an X-ray camera uses X-rays with a wavelength of 3.10 nm. Calculate the frequency of the X-rays. Be sure your answer has the correct number of significant digits.arrow_forwardIn a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. When a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. (a) Draw a sketch of the situation. (b) What is the wavelength of the light in the glass? Hint: determine nglass first. Answer: 196 nmarrow_forwardThe wavelength of red helium–neon laser light in air is 632.8 nm. (a) What is its frequency? Hz(b) What is its wavelength in glass that has an index of refraction of 1.46? nm(c) What is its speed in the glass? Mm/sarrow_forward
- LASIK eye surgery uses pulses of laser light to shave off tissue from the cornea, reshaping it. A typical LASIK laser emits a 1.0-mmmm-diameter laser beam with a wavelength of 193 nmnm. Each laser pulse lasts 13 nsns and contains 1.1 mJmJ of light energy. What is the power of one laser pulse? During the very brief time of the pulse, what is the intensity of the light wave?arrow_forwardA laser generates plane waves of visible light. If you determine the intensity of the waves to be I a distance r from the laser, what is the intensity a distance of 2r from the laser? Options : I 1/2I 1/4I 4I 2Iarrow_forwardTwo light waves begin with identical phases from different places, propagate outward, and arrive at the same location. Each wave has amplitude A, wavelength 500nm, and speed c, but one wave must travel 600 nm farther to arrive there and sperimpose with the other wave. a) what is the frequency of the resulting disturbance? b) what is the phase difference (in radians) between the waves when they arrive?arrow_forward
- A certain helium–neon laser emits red light in a narrow band of wavelengths centered at 632.8 nm and with a “wavelength width” of 0.0100 nm.What is the corresponding “frequency width” for the emissionarrow_forwardanswer is D, explain how?arrow_forwardTo reduce the loss of light when reflected from the glass surface, the latter is covered with a thin layer of a substance, the refractive index of which is n '= sqrt (n), where n is the refractive index of the glass. At what minimum thickness d (min) of this layer will the reflectivity of glass in the normal direction be minimal for light with a wavelength λ?arrow_forward
- The wavelength of red helium-neon laser light in air is 632.8 nm. (a) What is its frequency? Hz (b) What is its wavelength in glass that has an index of refraction of 1.55? nm (c) What is its speed in the glass? Mm/sarrow_forward2. = A planar dielectric waveguide with the core refractive index n₁ 1.56 and the 1.47 is used to transmit light of wavelength o 750 nm. Suppose cladding index n₂ = = the width of the waveguide is d = 1.0 μm: (a) Determine the critical angle 0c at the interface. (b) Calculate and plot the phase change on reflection o, as a function of angle of incidence in the range 0c < 02, for the case of a TE wave. = 1, (c) Calculate the value of the angle of incidence Om corresponding to mode m = and the corresponding phase change $1. (d) Determine the skin depth for the evanescent wave in medium n2, for this mode.arrow_forwardA light ray is incident from air into glass (ng = 1.52) then onto water (nw = 1.33). The wavelength of light in air (na= 1) is Aair = 500 nm and it travels at a speed c = 3 x 108 m/s. The wavelength of light, 1, and its frequency, f, in water, are, respectively: %3D 500 nm,8×10^11 Hz 376 nm,8×10^11 Hz 500 nm,6x10^14 Hz 376 nm,6×10^14 Hzarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY