Concept explainers
GO ILW Two waves of light in air, of wavelength λ = 600.0 nm, are initially in phase. They then both travel through a layer of plastic as shown in Fig. 35-36, with L1 = 4.00 μm, L2 — 3.50 μm, n1= 1.40, and n2 = 1.60. (a) What multiple of λ gives their phase difference after they both have emerged from the layers? (b) If the waves later arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive?
Figure 35-36 Problem 13.
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
Microbiology with Diseases by Body System (5th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Human Anatomy & Physiology (2nd Edition)
- Two polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forward
- *66 o In Fig. 33-62, a light ray in air is incident at angle 6, on a block of transparent plastic with an index of refraction of 1.56. The dimen- sions indicated are H= 2.00 cm and W = 3.00 cm. The light passes through the block to one of its sides and there undergoes reflection (in- side the block) and possibly refraction (out into the air). This is the point of first reflection. The re- flected light then passes through the block to another of its sides-a point of second reflection. If 6 = 40°, on which side is the point of (a) first reflection and (b) second reflection? If there is refraction at the point of (c) first reflection and (d) second reflection, give the angle of refraction; if not, answer "none." If 61 = 70°, on which side is the point of (e) first reflection and (f) second reflection? If there is refrac- tion at the point of (g) first reflection and (h) second reflection, give the angle of refraction; if not, answer “none." н Figure 33-62 Problem 66.arrow_forwardLight of wavelength, 1 = 0.6 µm in air is incident on a thin sheet of transparent mylar (ɛ, = 6). (a) What is the wavelength of the light in mylar? (b) What thickness (1) gives minimum reflection? (c) If the mylar thickness is instead such that BI = T/2, what is the reflection coefficient, I ? Answers: (a) 2 = _ m %3| (b) l = _m %3D (c) T =, -arrow_forward..54 Dispersion in a window pane. In gle e Fig. 33-54, a beam of white light is incident at an- 50° on a common window pane (shown in cross section). For the pane's type of glass, the index of refraction for visible light ranges from 1.524 at the blue end of the spectrum to 1.509 at the red end. The two sides of the pane are paral- lel. What is the angular spread of the colors in the beam (a) when the light enters the pane and (b) when it emerges from the opposite side? (Hint: When you look at an object through a window pane, are the colors the light from the object dispersed as shown in, say, Fig. 33-20?) = Ꮎ Figure 33-54 Problem 54.arrow_forward
- 103 In Fig. 35-59, an oil drop (n = 1.20) floats on the surface of wa- ter (n = 1.33) and is viewed from overhead when illuminated by sun- light shining vertically downward and reflected vertically upward. (a) Are the outer (thinnest) regions of the drop bright or dark? The oil film displays several spectra of colors. (b) Move from the rim inward to the third blue band and, using a wavelength of 475 nm for blue light, determine the film thickness there. (c) If the oil thickness in- creases, why do the colors gradually fade and then disappear? %3D Oil Water Figure 35-59 Problem 103.arrow_forwardA fine metal foil separates one end of two pieces ofoptically flat glass, as in Fig. 24–33. When light of wavelength 670 nm is incident normally, 24 dark bands areobserved (with one at each end). How thick is the foil?arrow_forward53 SSM www ILW In Fig. 33-53, a ray is incident on one face of a triangular glass prism in air. The angle of incidence e is chosen so that the emerging ray also makes the same angle e with the nor- mal to the other face. Show that the index of refraction n of the glass prism is given by sin ( + 6) sin o where o is the vertex angle of the prism and is the deviation angle, the total angle through which the beam is turned in passing through the prism. (Under these conditions the deviation angle u has the smallest possible value, which is called the angle of mini- mum deviation.) Figure 33-53 Problems 53 and 64.arrow_forward
- To reduce the loss of light when reflected from the glass surface, the latter is covered with a thin layer of a substance, the refractive index of which is n '= sqrt (n), where n is the refractive index of the glass. At what minimum thickness d (min) of this layer will the reflectivity of glass in the normal direction be minimal for light with a wavelength λ?arrow_forwardIn the figure, assume two waves of light in air, of wavelength 407 nm, are initially in phase. One travels through a glass layer of index of refraction n = 1.62 and thickness L. The other travels through an equally thick plastic layer of index of refraction n2 = 1.36. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.26 rad? (b) If the waves arrive at some common point with thsame amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? (a) Number i Units (b)arrow_forwardThe phase shift between ordinary and extraordinary waves in the plastic and thus the degree of transmission is dependent on both the birefringence An (= no-ne), and the air wavelength 20: Ap= (nod-ned) (2π/20) where the symbols have their usual meaning. If we have a situation whereby, at a particular region in the plastic, for blue light (20= 450nm) the phase shift is 47 and the blue light is not transmitted, at what wavelength will the phase shift be 3r, where the transmission will be a maximum? What will happen to the blue light if we rotate one of the polarisers so that the transmission axes of the two are now parallel?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax