Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 76P
The lens in a Newton’s rings experiment (see Problem 75) has diameter 20 mm and radius of curvature R = 5.0 m. For λ = 589 nm in air, how many bright rings are produced with the setup (a) in air and (b) immersed in water (n = 1.33)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The lens in a Newton’s rings experiment has diameter 20 mm and radius of curvature R = 5.0 m. For l = 589 nm in air, how many bright rings are produced with the setup (a) in air and (b) immersed in water (n = 1.33)?
In a Newton’s-rings experiment, a plano-convex glass (n = 1.52) lens having radius r = 5.00 cm is placed on a flat plate as shown . When light of wavelength λ = 650 nm is incident normally, 55 bright rings are observed, with the last one precisely on the edge of the lens. (a) What is the radius R of curvature of the convex surface of the lens? (b) What is the focal length of the lens?
let a beam of x rays of wavelength 0.125 nm be incident on an NaCl crystal at angle u 45.0° to the top face of the crystal and a family of reflecting planes. Let the reflecting planes have separation d = 0.252 nm. The crystal is turned through angle f around an axis perpendicular to the plane of the page until these reflecting planes give diffraction maxima. What are the (a) smaller and (b) larger value of f if the crystal is turned clockwise and the (c) smaller and (d) larger value of f if it is turned counterclockwise?
Chapter 35 Solutions
Fundamentals of Physics Extended
Ch. 35 - Does the spacing between fringes in a two-slit...Ch. 35 - a If you move from one bright fringe in a two-slit...Ch. 35 - Figure 35-22 shows two light rays that are...Ch. 35 - In Fig. 35-23, three pulses of lighta, b, and cof...Ch. 35 - Is there an interference maximum, a minimum, an...Ch. 35 - Figure 35-24a gives intensity I verus position x...Ch. 35 - Figure 35-25 shows two sources S1 and S2 that emit...Ch. 35 - Figure 35-26 shows two rays of light, of...Ch. 35 - Light travels along the length of a 1500-nm-long...Ch. 35 - Figure 35-27a shows the cross section of a...
Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Practice Problem 17.1 Give an IUPAC systematic name for each of the following: (a) (b) (c) (d) (e)
Organic Chemistry
Locate three sinkholes depressions on the map and mark each with an X. Hint: Look for closed contour lines with...
Applications and Investigations in Earth Science (9th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
In rabbits, chocolate-colored fur (w+) is dominant to white fur (w), straight fur (c+) is dominant to curly fur...
Genetic Analysis: An Integrated Approach (3rd Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
5. The positive charge in Figure Q20.5 is +Q. What is the negative charge if the electric field at the dot is z...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardA Newton’s rings apparatus is to be used to determine the radius of curvature of a lens . The radii of the nth and (n + 20)th bright rings are found to be 0.162 and 0.368 cm, respectively, in light of wavelength 546 nm. Calculate the radius of curvature of the lower surface of the lens.arrow_forwardA lens with an index of refraction of 1.60 is to be coated with a material (n = 1.40) that will make the lens nonreflecting for yellow-orange light (λλ = 515 nm) normally incident on the lens. What is the minimum required thickness of the coating?arrow_forward
- The limit to the eye’s visual acuity is related to diffraction by the pupil.D = 2.85 mmdh = 1.25 m a. What is the angle between two just-resolvable points of light for a 2.85 mm diameter pupil in radians, assuming an average wavelength of 550 nm? θmin = b. Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.25 m apart? L= c. What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm? da =arrow_forwardAn optical plane wave with 20 = 532 nm propagates through an isotropic material with unknown optical properties. The total optical phase accumulated per unit length in the material is 1.8 x 10ª radians/mm and the optical power decreases by 90% when propagating over 2 mm. Calculate the complex index of refraction for this material, n = n' - j.n".arrow_forwardA spy satellite circles Earth at an altitude of 200 km and carries out surveillance with a special highresolution telescopic camera having a lens diameter of 35 cm. If the angular resolution of this camera is limited by diffraction, estimate the separation of two small objects on Earth’s surface that are just resolved in yellow-green light (λ = 550 nm).arrow_forward
- The Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 610-nm light is used, the tube is 5.40 cm long, and 168 bright fringes pass on the screen as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to at least five decimal places.)arrow_forward. The velocity of light in the core of a step index fiber is 2.01 × 108 m s-1, and the critical angle at the core-cladding interface is 80°. Determine the numerical aperture and the acceptance angle for the fiber in air, assuming it has a core diameter suitable for consideration by ray analysis. The velocity of light in a vacuum is 2.998 x 103 m s-1arrow_forwardWe consider a Newton's rings experiment. It consists of a plano-convex glass lens of index of refractionn = 1.50 and radius r = 5.08 cm placed on a flat plate, as shown. When light of wavelength 636 nm is incident normally, 54 bright rings are observed, with the last one precisely on the edge of the lens. R a. What is the thickness t of the air layer at the edge of the lens? This corresponds to the maximum distance between the curved surface and the flat plate. um b. What is the radius of curvature R of the convex surface of the lens? m c. What is the focal length of the lens? Hint: use the lens maker equation. marrow_forward
- In the single-slit diffraction experiment of the figure, let the wavelength of the light be 541 nm, the slit width be 6.11 pm, and the viewing screen be at distance D = 3.41 m. Let a y axis extend upward along the viewing screen, with its origin at the center of the diffraction pattern. Also let Ip represent the intensity of the diffracted light at point P at y = 15.8 cm. (a) What is the ratio of Ip the intensity Im at the center of the pattern? Determine where point P is in the diffraction pattern by giving the orders of nearest (b) maximum (0 is the central maximum) and (c) minimum between which it lies. Totally destructive interference- P1 12 Po Central axis a/2 Viewing screen Incident wave Units (a) Number 2.98e-4 This answer has no units Units (b) Number This answer has no units Version 4.24.1 2.arrow_forwardOn a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 33.30 relative to its surface, using an x-ray source of unknown wavelength. Additionally, when illuminated with a different x-ray, this time of known.wavelength 0.205 nm, a second-order maximum is detected at 22.20. Determine the spacing between the reflecting planes.. Select one: O a. 0.19nm O b. 1.84nm O c. 0.27nm O d. 0.54nmarrow_forwardA slit of width d is placed in front of a lens of focal length 0.5 m and is illuminated normally with light of wavelength 5.89 × 107 m. The first diffraction minima on either side of the central diffraction maximum are separated by 2 × 10-³ m. The width d of the slit is m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY