Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 20P
Monochromatic green light, of wavelength 550 nm, illuminates two parallel narrow slits 7.70 μm apart. Calculate the angular deviation (θ in Fig. 35-10) of the third-order (m = 3) bright fringe (a) in radians and (b) in degrees.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
..40 Go Figure 36-45 gives the pa- ß (rad)
rameter of Eq. 36-20 versus the ßs
sine of the angle in a two-slit inter-
ference experiment using light of
wavelength 435 nm. The vertical axis
scale is set by B, = 80.0 rad. What are
(a) the slit separation, (b) the total
number of interference maxima
(count them on both sides of the
pattern's center), (c) the smallest angle for a maxima, and (d) the
greatest angle for a minimum? Assume that none of the interference
maxima are completely eliminated by a diffraction minimum.
0
sin 0
0.5
1
Figure 36-45 Problem 40.
Problem 3:
Consider the far-field diffraction pattern of a single slit of
width 2.125 µm when illuminated normally by a collimated
beam of 550-nm light. Determine (a) the angular radius of
its central peak and (b) the ratio I/Io at points making an
angle of 0 = 5°, 10°, 15°, and 22.5° with the axis.
A double-slit arrangement produces interference fringes for sodium light (l =589 nm) that have an angular separation of 3.50* 10-3 rad. For what wavelength would the angular separation be 10.0% greater?
Chapter 35 Solutions
Fundamentals of Physics Extended
Ch. 35 - Does the spacing between fringes in a two-slit...Ch. 35 - a If you move from one bright fringe in a two-slit...Ch. 35 - Figure 35-22 shows two light rays that are...Ch. 35 - In Fig. 35-23, three pulses of lighta, b, and cof...Ch. 35 - Is there an interference maximum, a minimum, an...Ch. 35 - Figure 35-24a gives intensity I verus position x...Ch. 35 - Figure 35-25 shows two sources S1 and S2 that emit...Ch. 35 - Figure 35-26 shows two rays of light, of...Ch. 35 - Light travels along the length of a 1500-nm-long...Ch. 35 - Figure 35-27a shows the cross section of a...
Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
41. Humans vary in many ways from one another. Among many minor phenotypic differences are the following five i...
Genetic Analysis: An Integrated Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
57. Which buffer system is the best choice to create a buffer with pH = 7.20? For the best system, calculate th...
Chemistry: A Molecular Approach (4th Edition)
WHAT IF? Consider two species that diverged while geographically separated but resumed contact before reproduct...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Both sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardwww In Fig. 35-48, an airtight chamber of length d 5.0 cm is placed in one of the arms of a Michelson interferometer. (The glass window on each end of the cham- ber has negligible thickness.) Light of wavelength A = 500 nm is used. Evacuating the air from the chamber causes a shift of 60 bright fringes. From these data and to six significant figures, 81 SSM Mirror %3D Source Mirror To vacuum find the index of refraction of air at pump atmospheric pressure.arrow_forward
- Problem 20: Consider 642 nm light falling on a single slit of width 19.5 μm.Randomized Variablesλ = 642 nmw = 19.5 μm Part (a) Find the angle, in degrees, of the third diffraction minimum for the light.Numeric : A numeric value is expected and not an expression.θ3 = __________________________________________Part (b) What slit width (in micrometers) would place this minimum at 85.0°?Numeric : A numeric value is expected and not an expression.w' = __________________________________________arrow_forwardMonochromatic green light, of wavelength 550 nm, illuminates two parallel narrow slits 7.70 mm apart. Calculate the angular deviation () of the third-order (m = 3) bright fringe (a) in radians and (b) in degrees.arrow_forwardThe intensity in the interference pattern of N 2 sin(No/2) identical slits is given by I = Io sin(ø/2) Find the maximum intensity (Imax) in the pattern. Expressed in N and I,arrow_forward
- Problem 4: Consider light that has its third minimum at an angle of 21.2° when it falls on a single slit of width 3.95 µm. Randomized Variables 0 = 21.2° w = 3.95 μm Find the wavelength of the light in nanometers. 2 || = sin() cos() cotan() asin() atan() acotan() cosh() tanh() O Degrees tan() acos() sinh() cotanh() Radians π () 7 8 9 E ^^^ 4 5 6 3 1 2 0 + VO BACKSPACE * DEL HOME END CLEARarrow_forwardProblem 5: Consider light that has its third minimum at an angle of 24.4° when it falls on a single slit of width 3.55 µm . Randomized Variables e = 24.4 ° w = 3.55 µm Find the wavelength of the light in nanometers. 2 = 789 E AAL 4 |5 | 6 1| 2 sin() cos() tan() HOME cotan() asin() acos() atan() acotan() sinh() 3 cosh() tanh() cotanh() END O Degrees O Radians vol BACKSPACE DEL CLEAR Submit I give up! Hint Feedbackarrow_forward(a) How many fringes appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern if λ = 691 nm, d = 0.120 mm, and a = 39.4 μm? (b) What is the ratio of the intensity of the third bright fringe to the intensity of the central fringe? (a) Number i 3 Units No units (b) Number 2.0E-4 Units No unitsarrow_forward
- How can I calculate the phase difference, in radians, between the rays from the two slits as they strike the screen at the specified distance from the central maximum, given an electromagnetic radiation of intensity I0 = 340 W/m2 that passes through two parallel narrow slits that are d = 1.4 μm apart and strikes a screen located L = 2.2 m from the slits. The intensity of the radiation on the screen at y = 3.9 mm from the central interference maximum is I = 95 W/m2. I know the equation is 2 acos (I/I0)1/2 but can't figure out the answer.arrow_forwardA sodium gas-discharge lamp emits a visible "doublet" of two spectral emission lines, one at 589.0nm and the other at 589.6nm. (a) How many slits/cm are required for a transmission diffraction grating that is 2.5 cm wide to distinctly resolve these two lines at first order (m=1) ? (b) At second order (m=2) ?arrow_forwardProblem 1: In a double slit experiment the first minimum for 415 nm violet light is at an angle of 42°. Randomized Variables 2 = 415 nm e = 42 ° Find the distance between the two slits in micrometers. d= 8 9 5 6 sin() cos() tan() 7 HOME cotan() asin() acos() E A 4 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() END O Degrees O Radians Vol BACKSPACE DEL CLEAR +arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY