Concept explainers
GO In Fig. 35-40, two isotropic point sources of light (S1 and S2) are separated by distance 2.70 μm along a y axis and emit in phase at wavelength 900 nm and at the same amplitude. A light detector is located at point P at coordinate xp on the x axis. What is the greatest value of xp at which the detected light is minimum due to destructive interference?
Figure 35-40 Problems 25 and 28
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Principles of Anatomy and Physiology
Human Biology: Concepts and Current Issues (8th Edition)
Biology: Life on Earth with Physiology (11th Edition)
General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
Campbell Biology in Focus (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- In the figure, two isotropic point sources of light (S, and S2) are separated by distance 2.60 µm along a y axis and emit in phase at wavelength 870 nm and at the same amplitude. A light detector is located at point P at coordinate xp on the x axis. What is the greatest value of xp at which the detected light is minimum due to destructive interference? P Number Units the tolerance is +/-5%arrow_forwardThe phase shift between ordinary and extraordinary waves in the plastic and thus the degree of transmission is dependent on both the birefringence An (= no-ne), and the air wavelength 20: Ap= (nod-ned) (2π/20) where the symbols have their usual meaning. If we have a situation whereby, at a particular region in the plastic, for blue light (20= 450nm) the phase shift is 47 and the blue light is not transmitted, at what wavelength will the phase shift be 3r, where the transmission will be a maximum? What will happen to the blue light if we rotate one of the polarisers so that the transmission axes of the two are now parallel?arrow_forwardml (0.0700 nm) 2d 2(0.314 nm) Find the grazing angle corresponding sin e = 0.111 to m = 1, for first-order interference: e = sin-1(0.111) = 6.37° Repeat the calculation for third-order interference (m = 3): mì 3(0.0700 nm) sin e = 2d = 0.334 2(0.314 nm) e = sin(0.334) = 19.5° LEARN MORE REMARKS Notice there is little difference between this kind of problem and a Young's slit experiment. QUESTION If the grazing angle is smaller, the distance between planes in the crystal lattice is: larger. O the same. O smaller. PRACTICE IT Use the worked example above to help you solve this problem. If the spacing between certain planes in a crystal of calcite (CaCO,) is 0.313 nm, find the grazing angles at which first- and third-order interference will occur for x-rays of wavelength 0.0661 nm. 0, = 6.06 82 =| 18.47 EXERCISE HINTS: GETTING STARTED | I'M STUCK! X-rays of wavelength 0.0620 nm are scattered from a crystal with a grazing angle of 11.1°. Assume m = 1 for this process. Calculate the spacing…arrow_forward
- 78 E The primary rainbow described in Problem 77 is the type commonly seen in regions where rainbows appear. It is pro- duced by light reflecting once inside the drops. Rarer is the sec- ondary rainbow described in Module 33-5, produced by light reflecting twice inside the drops (Fig. 33-68a). (a) Show that the angular deviation of light entering and then leaving a spherical water drop is Odev = (180°)k + 20, – 2(k + 1)8,, where k is the number of internal reflections. Using the procedure of Problem 77, find the angle of minimum deviation for (b) red light and (c) blue light in a secondary rainbow. (d) What is the angular width of that rainbow (Fig. 33-21d)? The tertiary rainbow depends on three internal reflections (Fig. 33-68b). It probably occurs but, as noted in Module 33-5, cannot be seen with the eye because it is very faint and lies in the bright sky surrounding the Sun. What is the angle of minimum de- viation for (e) the red light and (f) the blue light in this rainbow? (g)…arrow_forward10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at λ1=1.553μm and 5mW at λ2=0.828μm. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won’t exit the GaAs. What are the absorption coefficients, α, for two different wavelengths?arrow_forwardIn the figure, two isotropic point sources of light (5, and S₂) are separated by distance 2.60 um along ay axds and emit in phase at wavelength 920 nm and at the same amplitude. A light detector is located at point Pat coordinate xp on the x axis. What is the greatest value of xp at which the detected light is minimum due to destructive interference? Number Unitsarrow_forward
- Two interfering light waves have intensities of 20\,W\,m−2 and 40\,W\,m−2, and the phase difference between them at some point P is π/3. The intensity at P, in W m−2−2, including interference is:(give your answer as a decimal to 1 d.p. )arrow_forwardSources A and B emit long-range radio waves of wavelength 310 m, with the phase of the emission from A ahead of that from source B by 90°. The distance rA from A to a detector is greater than the corresponding distance rB from B by 150 m. What is the magnitude of the phase difference at the detector?arrow_forwardA thin layer of oil with index of refraction no = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. A light with wavelength λ = 325 nm goes in from the air to oil and water. Part (a) Express the wavelength of the light in the oil, λo, in terms of λ and no. Part (b) Express the minimum thickness of the film that will result in destructive interference, tmin, in terms of λo. Part (c) Express tmin in terms of λ and no. Part (d) Solve for the numerical value of tmin in nm.arrow_forward
- (c) The electric fields from two e/m waves are described by E1 = 10.0 cos(kr – wt) N/C and E2 = 15.0 cos(kr – wt + 60°) N/C. What is the phase of the resultant electric field (in degrees)? (d) Electrons moving at a speed of 30 m/s pass through a single slit of diameter 8.5 x 10-5 m. A diffraction pattern forms, due to the wave nature of the electrons. At what angle (in degrees) is the first-order minimum of this pattern located? (e) A neutron (with mass m, = 939.566 MeV/c²) is confined inside a nucleus of the most common isotop of iron, Fe. Assume the nucleus is spherical, and that the uncertainty in the position of the neutron is the diameter, not the radius, of the nucleus. What is the minimum uncertainty in the velocity of the neutron, in m/s?arrow_forward2. = A planar dielectric waveguide with the core refractive index n₁ 1.56 and the 1.47 is used to transmit light of wavelength o 750 nm. Suppose cladding index n₂ = = the width of the waveguide is d = 1.0 μm: (a) Determine the critical angle 0c at the interface. (b) Calculate and plot the phase change on reflection o, as a function of angle of incidence in the range 0c < 02, for the case of a TE wave. = 1, (c) Calculate the value of the angle of incidence Om corresponding to mode m = and the corresponding phase change $1. (d) Determine the skin depth for the evanescent wave in medium n2, for this mode.arrow_forwardSS-1 Coherent light of wavelength 675 nm passes through a narrow slit of width 0.0143 mm. The diffraction pattern is projected onto a viewing screen 1.08 m away from the slit. The intensity of the light at the center of the diffraction pattern is 175 W/m². (a) Draw a picture of the of situation descried in this problem. (b) Find the width of the central bright spot on the screen, in centimeters (cm). (c) Find the distance between the center of the diffraction pattern and the m = 4 minimum on the screen, in cm. (d) What is the intensity at a point on the screen 13.5 cm from the central maximum?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON