Fundamentals of Physics Extended
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 35, Problem 1Q

Does the spacing between fringes in a two-slit interference pattern increase, decrease, or stay the same if (a) the slit separation is increased, (b) the color of the light is switched from red to blue, and (c) the whole apparatus is submerged in cooking sherry? (d) If the slits are illuminated with white light, then at any side maximum, does the blue component or the red component peak closer to the central maximum?

Expert Solution & Answer
Check Mark
To determine

To find:

a) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the slit separation is increased?

b) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red to blue?

c) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the whole apparatus is submerged in cooking sherry?

d) If the slits are illuminated with white light, then at any side maximum does the blue component or the red component peak closer to the central maximum?

Answer to Problem 1Q

Solution:

a) The spacing between the fringes in a two-slit interference pattern decreases if the slit separation is increased.

b) The spacing between the fringes in a two-slit interference pattern decreases if the color of the light is switched from red to blue.

c) The spacing between the fringes in a two-slit interference pattern decreases if the whole apparatus is submerged in cooking sherry.

d) If the slits are illuminated with white light, then at any side maximum the blue component peak will be closer to the central maximum.

Explanation of Solution

1) Concept:

We use the concept of double slit experiment. Using the equation, we can determine whether the spacing between the fringes will increase, decrease or stay same. For part c), we use the relation between the initial and the new wavelength.

2) Formulae:

y=λDd

3) Calculations:

a) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the slit separation is increased?

Using the equation,

y=λDd

In this equation, y is spacing between in the fringes, λ is wavelength, D is distance between the slits and screen and d is the separation between the slits.

From the above equation if we increase the slit separation d, the spacing between the fringes decreases.

b) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red to blue?

We know that the wavelength of the light spectrum decreased from red to blue.

λr>λb

y=λDd

So, here, if λ decreases, then y also decreases.

c) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the whole apparatus is submerged in cooking sherry?

We know,

n=λiλf

We can write the wavelength as

λf=λin

We get,

y=λfDd

y=λinDd

So, y is inversely proportional to n. Therefore, y decreases.

d) If the slits are illuminated with white light, then at any side maximum does the blue component or the red component peak closer to the central maximum?

Here, the blue component peak will be closer to the central maximum because

yλ

And for the lowest value of y the value of λ must be minimum, which is the blue light.

Hence, the blue component will be closer to the central maximum.

Conclusion:

We can use the concept of double slit experiment to determine the spacing between the fringes.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In a double slit interference pattern, the intensity at the peak of the central maximum(m = 0) is I0.(a) Calculate the intensity you measure at a point P in the pattern where the phasedifference between the waves from slits S1 and S2 is 45.0◦.(b) Calculate the difference in path at point P if the frequency of the light used inthe experiment is ν = 600 THz       An object is 2.00-cm-tall and is positioned 75.0 cm to the left of lens 1. Lens 1 isa converging lens with focal length f1 = 35.0 cm. A second converging lens, lens 2,having a focal length f2 = 50.0 cm, is located 200.0 cm to the right of lens 1, along thesame optic axis, and will have the image produced by lens 1 (I1) as its object.(a) Find the location (s01) and size (y01) of the image formed by lens 1. (b) Find the location (s02) and size (y02) of the image formed by lens 2.
(a) In Young’s double slit experiment, derive the condition for (i) constructive interference and (ii) destructive interference at a point on the screen. (b) A beam of light consisting of two wavelenths, 800 nm and 600 nm is used to obtain the interference fringes in a Young’s double slit experiment on a screen placed 1.4 m away. If the two slits are separated by 0.28 mm, calculate the least distance from the central bright maximum where the bright fringes of the two wavelengths coincide.
(a) Young's double-slit experiment is performed with 595-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.20 mm from the central maximum. Determine the spacing of the slits (in mm). mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength nm largest wavelength nm

Chapter 35 Solutions

Fundamentals of Physics Extended

Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY