Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 35, Problem 2P
In Fig. 35-31, a light wave along ray r1 reflects once from a mirror and a light wave along ray r2 reflects twice from that same mirror and once from a tiny mirror at distance L from the bigger mirror. (Neglect the slight tilt of the rays.) The waves have wavelength λ and are initially exactly out of phase. What are the (a) smallest, (b) second smallest, and (c) third smallest values of L/λ that result in the final waves being exactly in phase?
Figure 35-31 Problems 1 and 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
www In Fig. 35-48,
an airtight chamber of length d
5.0 cm is placed in one of the arms
of a Michelson interferometer. (The
glass window on each end of the cham-
ber has negligible thickness.) Light of
wavelength A = 500 nm is used.
Evacuating the air from the chamber
causes a shift of 60 bright fringes. From
these data and to six significant figures,
81 SSM
Mirror
%3D
Source
Mirror
To vacuum
find the index of refraction of air at
pump
atmospheric pressure.
In the figure, assume two waves of light in air, of wavelength 407 nm, are initially in phase. One travels through a glass layer of index of
refraction n = 1.62 and thickness L. The other travels through an equally thick plastic layer of index of refraction n2 = 1.36. (a) What is
the smallest value L in meters should have if the waves are to end up with a phase difference of 5.26 rad? (b) If the waves arrive at some
common point with thsame amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully
constructive, or intermediate but closer to fully destructive?
(a) Number
i
Units
(b)
(c) The electric fields from two e/m waves are described by E1 = 10.0 cos(kr – wt) N/C and
E2 = 15.0 cos(kr – wt + 60°) N/C. What is the phase of the resultant electric field (in degrees)?
(d) Electrons moving at a speed of 30 m/s pass through a single slit of diameter 8.5 x 10-5 m. A
diffraction pattern forms, due to the wave nature of the electrons. At what angle (in degrees) is the
first-order minimum of this pattern located?
(e) A neutron (with mass m, = 939.566 MeV/c²) is confined inside a nucleus of the most common isotop
of iron, Fe. Assume the nucleus is spherical, and that the uncertainty in the position of the neutron is
the diameter, not the radius, of the nucleus. What is the minimum uncertainty in the velocity of the
neutron, in m/s?
Chapter 35 Solutions
Fundamentals of Physics Extended
Ch. 35 - Does the spacing between fringes in a two-slit...Ch. 35 - a If you move from one bright fringe in a two-slit...Ch. 35 - Figure 35-22 shows two light rays that are...Ch. 35 - In Fig. 35-23, three pulses of lighta, b, and cof...Ch. 35 - Is there an interference maximum, a minimum, an...Ch. 35 - Figure 35-24a gives intensity I verus position x...Ch. 35 - Figure 35-25 shows two sources S1 and S2 that emit...Ch. 35 - Figure 35-26 shows two rays of light, of...Ch. 35 - Light travels along the length of a 1500-nm-long...Ch. 35 - Figure 35-27a shows the cross section of a...
Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
MAKE CONNECTIONS The gene that causes sickle-cell disease is present in a higher percentage of residents of su...
Campbell Biology (11th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardRefractive Index (n) is a ratio of the speed of light in a vacuum to the speed of light in materials such as glass, water, plastic, etc. Using Snell's Law, and given an air to glass interface with and angle of incidence of 15 degrees, what will be the angle of refractance R if the refractive index of the glass is 1.5 ? Snell's Law: n; (sin I) = n, (sin R) So, Sin R = n; (sin I) / n And, R = arcsin (n; (sin I) / n,) For each angle I, find angle R: 5. I=0, R = 6. I=45, R = 7. I= 60, R = 8. I = 75, R = = arcsin (1(.259)/1.5) = arcsin (.172) = 9.9 degrees Wavelength in Air- Light- Angle of Light -Wavelength in Glass Normal 90° R Air nj-1 Glassarrow_forwardIn the figure, assume two waves of light in air, of wavelength 460 nm, are initially in phase. One travels through a glass layer of index of refraction n₁ = 1.59 and thickness L. The other travels through an equally thick plastic layer of index of refraction n₂ = 1.20. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.84 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? L (a) Number (b) Units >arrow_forward
- Light of wavelength, 1 = 0.6 µm in air is incident on a thin sheet of transparent mylar (ɛ, = 6). (a) What is the wavelength of the light in mylar? (b) What thickness (1) gives minimum reflection? (c) If the mylar thickness is instead such that BI = T/2, what is the reflection coefficient, I ? Answers: (a) 2 = _ m %3| (b) l = _m %3D (c) T =, -arrow_forwardIn the figure, assume two waves of light in air, of wavelength 516 nm, are initially in phase. One travels through a glass layer of index of refraction n1 = 1.42 and thickness L. The other travels through an equally thick plastic layer of index of refraction n2 = 1.05. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.66 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? %3D %3D ng (a) Number 1.25E-6 Units (b) fully constructive fully destructive intermediate but closer to fully constructive eText intermediate but closer to fully destructivearrow_forward79 SSM (a) Prove that a ray of light incident on the surface of a sheet of plate glass of thickness t emerges from the opposite face parallel to its initial direction but displaced sideways, as in Fig. 33-69. (b) Show that, for small angles of incidence 0, this displacement is given by п - 1 x = te- п where n is the index of refraction of the glass and e is measured in radians. Figure 33-69 Problem 79.arrow_forward
- In the figure, assume two waves of light in air, of wavelength 657 nm, are initially in phase. One travels through a glass layer of index of refraction n₁ = 1.57 and thickness L. The other travels through an equally thick plastic layer of index of refraction n₂ = 1.25. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.71 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? Ro n1arrow_forwardA thin layer of oil with index of refraction no = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. A light with wavelength λ = 325 nm goes in from the air to oil and water. Part (a) Express the wavelength of the light in the oil, λo, in terms of λ and no. Part (b) Express the minimum thickness of the film that will result in destructive interference, tmin, in terms of λo. Part (c) Express tmin in terms of λ and no. Part (d) Solve for the numerical value of tmin in nm.arrow_forward63 In Fig. 33-60, light enters a 90° triangular prism at point P with inci- dent angle 6, and then some of it refracts at point Q with an angle of refraction of 90°. (a) What is the in- dex of refraction of the prism in terms of 6? (b) What, numerically, is the maximum value that the index of refraction can have? Does light emerge at Q if the incident angle at P is (c) increased slightly and (d) decreased slightly? Figure 33-60 Problem 63.arrow_forward
- 103 In Fig. 35-59, an oil drop (n = 1.20) floats on the surface of wa- ter (n = 1.33) and is viewed from overhead when illuminated by sun- light shining vertically downward and reflected vertically upward. (a) Are the outer (thinnest) regions of the drop bright or dark? The oil film displays several spectra of colors. (b) Move from the rim inward to the third blue band and, using a wavelength of 475 nm for blue light, determine the film thickness there. (c) If the oil thickness in- creases, why do the colors gradually fade and then disappear? %3D Oil Water Figure 35-59 Problem 103.arrow_forwardBy what length is a light ray displaced after passing from air into (and then out of) a 4.3 cm thick sheet of material n=1.34 with an incident angle of θ=34 degrees?arrow_forward*66 o In Fig. 33-62, a light ray in air is incident at angle 6, on a block of transparent plastic with an index of refraction of 1.56. The dimen- sions indicated are H= 2.00 cm and W = 3.00 cm. The light passes through the block to one of its sides and there undergoes reflection (in- side the block) and possibly refraction (out into the air). This is the point of first reflection. The re- flected light then passes through the block to another of its sides-a point of second reflection. If 6 = 40°, on which side is the point of (a) first reflection and (b) second reflection? If there is refraction at the point of (c) first reflection and (d) second reflection, give the angle of refraction; if not, answer "none." If 61 = 70°, on which side is the point of (e) first reflection and (f) second reflection? If there is refrac- tion at the point of (g) first reflection and (h) second reflection, give the angle of refraction; if not, answer “none." н Figure 33-62 Problem 66.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY