Concept explainers
In Fig. 35-37. two isotropic point sources S1, and S2 emit identical light waves in phase at wavelength λ. The sources lie at separation d on an x axis, and a light detector is moved in a circle of large radius around the midpoint between them. It detects 30 points of zero intensity, including two on the x axis, one of them to the left of the sources and the other to the right of the sources What is the value of d/λ?
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Chemistry & Chemical Reactivity
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Introductory Chemistry (6th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
- In Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forwardTwo polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardThe movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forward
- A linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardHow many helium atoms, each with a radius of about 31 pm, must be placed end to end to have a length equal to one wavelength of 470 nm blue light?arrow_forwardChapter 33, Problem 003 Z Your answer is partially correct. Try again. From the figure, approximate the (a) smaller and (b) larger wavelength at which the eye of a standard observer has half the eye's maximum sensitivity. What are the (c) wavelength, (d) frequency, and (e) period of the light at which the eye is the most sensitive? 100 80 60 40 20 400 450 500 550 600 650 700 Wavelength (nm) (a) Numbel o Units T510 Inm (b) Number Units Tnm 1610 (c) Numbel T550 Units Thm (d) Numbel545454550000000 Units THZ (e) Number Units p.00183 Relative sensitivityarrow_forward
- Chapter 33, Problem 003 Z Your answer is partially correct. Try again. From the figure, approximate the (a) smaller and (b) larger wavelength at which the eye of a standard observer has half the eye's maximum sensitivity. What are the (c) wavelength, (d) frequency, and (e) period of the light at which the eye is the most sensitive? 100 80 60 40 20 400 450 500 550 600 650 700 Wavelength (nm) (a) Numbel510 Units Inm (b) Numbel T610 Units Inm (c) Numbel T550 Units Inm (d) Number 5.45 Units (e) Number [27.75 Units Reative sensitivityarrow_forwardA circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 18.0 GHz. Two small boats are located 5.00 km away from the ship. How close together could the boats be and still be detected as two objects?arrow_forwardThe intensity I of light from an isotropic point source is determined as a function of distance r from the source. The figure gives intensity / versus the inverse square r2 of that distance. The vertical axis scale is set by Is = 223 W/m², and the horizontal axis scale is set by rs2 = 9.8 m2. What is the power of the source? I (W/m²) -² (m²)arrow_forward
- two isotropic point sources S1 and S2 emit identical light waves in phase at wavelength l.The sources lie at separation d on an x axis, and a light detector is moved in a circle of large radius around the midpoint between them. It detects 30 points of zero intensity, including two on the x axis, one of them to the left of the sources and the other to the right of the sources.What is the value of d/l?arrow_forwardIn the figure, two isotropic point sources of light (S, and S2) are separated by distance 2.60 µm along a y axis and emit in phase at wavelength 870 nm and at the same amplitude. A light detector is located at point P at coordinate xp on the x axis. What is the greatest value of xp at which the detected light is minimum due to destructive interference? P Number Units the tolerance is +/-5%arrow_forward02 y Figure 33-41 -Xarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax