Concept explainers
In Fig. 35-54, two isotropic point sources S1 and S2 emit light at wavelength λ = 400 nm. Source S1 is located at y = 640 nm; source S2 is located at y = –640 nm. At point P1 (at x = 720 nm), the wave from S2 arrives ahead of the wave from S1 by a phase difference of 0.600Π rad. (a) What multiple of λ gives the phase difference between the waves from the two sources as the waves arrive at point P2, which is located at y = 720 nm? (The figure is not drawn to scale.) (b) If the waves arrive at P2 with equal amplitudes, is the interference there fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive?
Figure 35-54 Problem 90.
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Biology: Life on Earth with Physiology (11th Edition)
Chemistry
Applications and Investigations in Earth Science (9th Edition)
General, Organic, and Biological Chemistry: Structures of Life (5th Edition)
- In Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forwardIn the figure, assume two waves of light in air, of wavelength 407 nm, are initially in phase. One travels through a glass layer of index of refraction n = 1.62 and thickness L. The other travels through an equally thick plastic layer of index of refraction n2 = 1.36. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.26 rad? (b) If the waves arrive at some common point with thsame amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? (a) Number i Units (b)arrow_forward10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at λ1=1.553μm and 5mW at λ2=0.828μm. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won’t exit the GaAs. What are the absorption coefficients, α, for two different wavelengths?arrow_forward
- The wavelength of red light from a helium-neon laser is 633 nm in air and 479 nm In a medium of index of refraction n. The speed v and the frequencyfof light in the given medium are: (Given: c = 3 x 10*8 m/s, and 1 nm = 10^-9 m) O v = 2.27 x 10°8 m/s;f=6.26 x 10*14 Hz O v = 2.64 x 10°8 m/s;f= 5.39 x 10*14 Hz O v = 245 x 10°8 m/s; f= 5.80 x 10*14 Hz O v= 227 x 10°8 m/s;f = 4.74x10^14 Hz O v=2.64 x 10*8 m/s; f = 4.74 x 10*14 Hz O v= 2.45 x 10*8 m/s;f = 4.74 x 10*14 Hzarrow_forwardAn incident wave along (1/2) i - (√3/2)j falls on a refractive surface at z = 0. If the refractive index is μ= √3 , find the propagation vectors for the reflected and the refracted rays.arrow_forwardChapter 33, Problem 003 From the figure, approximate the (a) smaller and (b) larger wavelength at which the eye of a standard observer has half the eye's maximum sensitivity. What are the (c) wavelength, (d) frequency, and (e) period of the light at which the eye is the most sensitive? 100 80 60 40 20 400 450 5000 550 600 650 700 Wavelength (nm) (a) Number 1 Units (b) Number +2 Units (c) Number -3 Units (d) Number 1+4 Units (e) Number 1+5 Units Relative sensitivityarrow_forward
- The refractive index of the standard blue (λ = 486.1 nm) and red (λ = 656.3 nm) hydrogen lines in extra-dense flint are 1.74 and 1.71, respectively. If white light strikes the flint surface in air at an angle of θ=30 degrees, what is the angular separation between the two colors?arrow_forwardLight of wavelength A = 629 nm is incident %3D from vacuum onto glass of index of refraction n = 1.49 with an angle of incidence e = 30°. Taking the speed of light in vacuum equal to 3 × 10^8 m/s, then the wavelength, Ag, and the frequency, fg, of light in the glass are respectively: O 422.1 nm; 4.8×10^14 Hz 422.1 nm; 7.1×10^14 Hz 433.8 nm; 6.9x10^14 Hz O 408.4 nm; 4.8×10^14 Hz 433.8 nm; 4.8×10^14 Hzarrow_forwardA yellow light from a sodium lamp has 2 wavelength components namely 589 nm and 589.59 nm. Refractive index 'n' of the dispersive medium with respect to both These wavelengths are 1.6351 and 1.6350 respectively. Define: (a) The phase velocities of the two waves in the glassarrow_forward
- In the figure, assume two waves of light in air, of wavelength 460 nm, are initially in phase. One travels through a glass layer of index of refraction n₁ = 1.59 and thickness L. The other travels through an equally thick plastic layer of index of refraction n₂ = 1.20. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.84 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? L (a) Number (b) Units >arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forward*67 O In the ray diagram of Fig. 33-63, where the angles are not drawn to scale, the ray is incident at the critical angle on the inter- face between materials 2 and 3. Angle o = 60.0°, and two of the in- dexes of refraction are n = 1.70 and n2 = 1.60. Find (a) index of refraction n3 and (b) angle 0. (c) If øi decreased, does light refract into material 3? Figure 33-63 Problem 67.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning