Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 23P
To determine
To find:
The phase difference of waves at point D
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sources A and B emit long-range radio waves of wavelength 380 m, with the phase of the emission from A ahead of that from source B by 90°. The distance rA from A to a detector is greater than the corresponding distance rB from B by 140 m. What is the magnitude of the phase difference at the detector?
Problem 4: Consider the 100-MHz radio waves used in an MRI device.
Part (a) What is the wavelength, in meters, of these radio waves?
λ = 3
Part (b) If the frequencies are swept over a ±12.5 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted?
λmin =
Part (c) What is the maximum, in meters, of this wavelength range?
λmax =
An AM radio transmitter broadcasts 45 kW of power uniformly in all directions.Randomized VariablesP = 45 kWd = 29 km
Part (a) Assuming all of the radio waves that strike the ground are completely absorbed, and that there is no absorption by the atmosphere or other objects, what is the intensity 29 km away?
Part (b) What is the maximum electric field strength at this distance, in N/C?
Chapter 35 Solutions
Fundamentals of Physics Extended
Ch. 35 - Does the spacing between fringes in a two-slit...Ch. 35 - a If you move from one bright fringe in a two-slit...Ch. 35 - Figure 35-22 shows two light rays that are...Ch. 35 - In Fig. 35-23, three pulses of lighta, b, and cof...Ch. 35 - Is there an interference maximum, a minimum, an...Ch. 35 - Figure 35-24a gives intensity I verus position x...Ch. 35 - Figure 35-25 shows two sources S1 and S2 that emit...Ch. 35 - Figure 35-26 shows two rays of light, of...Ch. 35 - Light travels along the length of a 1500-nm-long...Ch. 35 - Figure 35-27a shows the cross section of a...
Ch. 35 - Figure 35-28 shows four situations in which light...Ch. 35 - Figure 35-29 shows the transmission of light a...Ch. 35 - Figure 15-30 shows three situations in which two...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - In Fig. 35-31, a light wave along ray r1 reflects...Ch. 35 - SSM In Fig 35-4, assume that two waves of light in...Ch. 35 - In Fig. 35-32a, a beam of light in material 1 is...Ch. 35 - How much faster, in meters per second, does light...Ch. 35 - The wavelength of yellow sodium light in air is...Ch. 35 - The speed of yellow light from a sodium lamp in a...Ch. 35 - In Fig 35-33, two light pulses are sent through...Ch. 35 - In Fig. 35-4, assume that the two light waves, of...Ch. 35 - Figure 35-27a shows the cross section of a...Ch. 35 - Suppose that the two waves in Fig. 35-4 have...Ch. 35 - In Fig. 35-35, two light rays go through different...Ch. 35 - GO ILW Two waves of light in air, of wavelength =...Ch. 35 - In a double-slit arrangement the slits are...Ch. 35 - SSM A double-slit arrangement produces...Ch. 35 - A double-slit arrangement produces interference...Ch. 35 - Prob. 17PCh. 35 - In the two-slit experiment of Fig. 35-10, let...Ch. 35 - SSM ILW Suppose that Youngs experiment is...Ch. 35 - Monochromatic green light, of wavelength 550 nm,...Ch. 35 - In a double-slit experiment, the distance between...Ch. 35 - In Fig. 35-37. two isotropic point sources S1, and...Ch. 35 - Prob. 23PCh. 35 - In Fig. 35-39, two isotropic point sources S1 and...Ch. 35 - GO In Fig. 35-40, two isotropic point sources of...Ch. 35 - In a doublc-slit experiment, the fourth-order...Ch. 35 - A thin flake of mica n = 1.58 is used to cover one...Ch. 35 - Go Figure 35-40 shows I two isotropic point...Ch. 35 - Prob. 29PCh. 35 - Find the sum y of the following quantities: y1 =...Ch. 35 - ILW Add the quantities y1= 10 sin t, y2 = 15sint ...Ch. 35 - GO In the double-slit experiment of Fig. 35-10....Ch. 35 - GO Three electromagnetic waves travel through a...Ch. 35 - In Ihe double-slit experiment of Fig, 35-10, the...Ch. 35 - SSM We wish to coal flat glass n = 1.50 with a...Ch. 35 - A 600-nm-thick soap film n = 1.40 in air is...Ch. 35 - The rhinestones in costume jewelry are glass with...Ch. 35 - White light is sent downward onto a horizontal...Ch. 35 - ilw Light of wavelength 624 nm is incident...Ch. 35 - A thin film of acetone n = 1.25 coats a thick...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - 41 through 52 GO 43, 51 SSM 47, 51 Reflection by...Ch. 35 - The reflection of perpendicularly incident white...Ch. 35 - A plane wave of monochromatic light is incident...Ch. 35 - SSM WWW A disabled tanker leaks kerosene n = 1.20...Ch. 35 - A thin film, with a thickness of 272.7 nm and with...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - Fig. 35-43, light is incident perpendicularly on a...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - 57 through 68 GO 64, 65 SSM 59 Transmission...Ch. 35 - GO In Fig. 35-44, a broad beam of light of...Ch. 35 - GO In Fig. 35-45, a broad beam of light of...Ch. 35 - In Fig. 35-45, two microscope slides touch at one...Ch. 35 - In Fig. 35-45, a broad beam of monochromatic light...Ch. 35 - SSM In Fig. 35-45, a broad beam of light of...Ch. 35 - GO Two rectangular glass plates n = 1.60 are in...Ch. 35 - SSM ILW Figure 35-46a shows a lens with radius of...Ch. 35 - The lens in a Newtons rings experiment see Problem...Ch. 35 - Prob. 77PCh. 35 - A thin film of liquid is held in a horizontal...Ch. 35 - If mirror M2 in a Michelson interferometer Fig....Ch. 35 - A thin film with index of refraction n = 1.40 is...Ch. 35 - SSM WWW In Fig. 35-48, an airtight chamber of...Ch. 35 - The element sodium can emit light at two...Ch. 35 - Prob. 83PCh. 35 - GO In Figure 35-50, two isotropic point sources S1...Ch. 35 - SSM A double-slit arrangement produces bright...Ch. 35 - GO In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - SSM In Fig. 35-51a, the waves along rays 1 and 2...Ch. 35 - Light of wavelength 700.0 nm is sent along a route...Ch. 35 - Prob. 89PCh. 35 - In Fig. 35-54, two isotropic point sources S1 and...Ch. 35 - Prob. 91PCh. 35 - Figure 35-56a shows two light rays that are...Ch. 35 - SSM If the distance between the first and tenth...Ch. 35 - Figure 35-57 shows an optical fiber in which a...Ch. 35 - SSM Two parallel slits are illuminated with...Ch. 35 - A camera lens with index of refraction greater...Ch. 35 - SSM Light of wavelength is used in a Michelson...Ch. 35 - In two experiments, light is to be sent along the...Ch. 35 - Figure 35-58 shows the design of a Texas arcade...Ch. 35 - A thin film suspended in air is 0.410 m thick and...Ch. 35 - Find the slit separation of a double-slit...Ch. 35 - In a phasor diagram for any point on the viewing...Ch. 35 - In Fig. 35-59, an oil drop n = 1.20 floats on the...Ch. 35 - Prob. 104PCh. 35 - The two point sources in Fig. 35-61 emit coherent...
Knowledge Booster
Similar questions
- D,E,Farrow_forward14 GO A light detector has an ab- E (n) sorbing area of 2.00 x 10-6 m2 and absorbs 50% of the incident light, E, which is at wavelength 600 nm. The detector faces an isotropic source, 12.0 m from the source. The energy E emitted by the source versus time t is given in Fig. 38-26 (E, = 7.2 nJ, t, = 2.0 s). At what rate are photons o absorbed by the detector? t (s) Figure 38-26 Problem 14.arrow_forwardProblem 4: Consider the 100-MHz radio waves used in an MRI device. Part (a) What is the wavelength, in meters, of these radio waves? Part (b) If the frequencies are swept over a ±14 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted? Part (c) What is the maximum, in meters, of this wavelength range?arrow_forward
- A plane harmonic electromagnetic wave is propagating in space along the y axis. If the E- field is linearly polarised in the yz-plane and if lamda= 500 nm, what is an expression for the corresponding B field when the irradiance is 53.2 W/m2?arrow_forwardQ: An AM radio signal propagating in free space has: E = Eo sin(1200πt - βz)ax H= (Eo / η)*sin(1200πt- βz)az Express these in phasor form and detrmine β and η such that the fields Satisfy Maxwell’s equations.arrow_forwardA spherical object of radius 10.5 cm is heated to a certain temperature. After examing its emission spectrum, it is found that the maximum intensity light has wavelength 800 nm. (A) Temperature of the object (B) Net rate of heat radiation by it if the outside temperature is 39.50 C (emissitivity 0.75)arrow_forward
- If electric and magnetic field strengths vary sinusoidally in time, being zero at t=0, then E=E0 sin 2πft and B=B0 Sin 2πft . Let f = 1.00 GHz here When are the field strengths first zero?arrow_forwardIn an aircraft, to protect a PCB from external interference signals it is housed in an Aluminum(Al) Box (this is normally referred to as shielding). Conductivity of Al is 38.2 x 106 S/m & µr = 1. What shall be the minimum thickness of the Al sheet from which this box is made, if we have to block 1.6 MHz interference signal from passing through this sheet?arrow_forward(a) Suppose a star is 8.59 x 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth? years (b) The Sun is 1.50 x 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? minutes (c) The Moon is 3.84 x 108 m from Earth. How long (in s) does it take for a high-intensity laser beam to travel from Earth to the Moon and back?arrow_forward
- An LED with total power Ptot=910 mW emits UV light of wavelength 370 nm. Assuming the LED is 45% efficient and acts as an isotropic point source (i.e., emits light uniformly in all directions), what is the amplitude of the electric field, E0, at a distance of 2.5 cm from the LED?arrow_forwardA uniform beam of laser light has a circular cross section of diameter d = 7.5 mm. The beam’s power is P = 4.9 mW. (a) Calculate the intensity, I, of the beam in units of W / m2. (b) The laser beam is incident on a material that completely absorbs the radiation. How much energy, ΔU, in joules, is delivered to the material during a time interval of Δt = 0.89 s? (c) Use the intensity of the beam, I, to calculate the amplitude of the electric field, E0, in volts per meter. (d) Calculate the amplitude of the magnetic field, B0, in teslas.arrow_forwardConsider an electromagnetic wave with a maximum magnetic field strength of 7.5 × 10-4 T.Randomized VariablesB = 7.5 × 10-4 T What is the maximum electric field strength in the wave in kV/m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning