Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.81P
A plane wall of thickness 0.1 m and thermal conductivity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. A steel plate of k=50W/mK and thickness 10cm passes a heat flux by conduction of 25kW/m2. If the temperature of hot surface of plate
is 100 C, then what is the temperature of the cooler side of plate?
1. 30 C
2. 40 C
3. 50 C
4. 60 C
A two-layer wall is made of two metal plates, with surface roughness of about 25 mm, pressed together at an average pressure of 10 MPa. The first layer is a stainless steel plate with a thickness of 5 mm and a thermal conductivity of 14 W/m∙K. The second layer is an aluminum plate with a thickness of 15 mm and a thermal conductivity of 237 W/m∙K. On the stainless steel side of the wall, the surface is subjected to a heat flux of 800 W/m2. On the aluminum side of the wall, the surface experiences convection heat transfer at an ambient temperature of 20°C, where the convection coefficient is 12 W/m2∙K. Determine the surface temperature of the stainless steel plate.
A thermal system having a cylindrical form contains a sequence of cylindrical layers is used to cool hot gases. The thermal properties of the
system materials are as follows : k = 231 W/m.K, c = 1033 J/kg.K and the density = 2702 kg/m^3. The gases to be cooled has a temperature
equals to 500 C. Determine the temperature of the system that corresponds to 10 % of the maximum possible heat transfer between the
gas and the system. Consider that the system has a characteristic length equals to 0.03 m. The heat convective coefficient is equal to 50
W/m^2.K. The initial temperature of the system is equal to 20 C.
Select one:
О а. 370 К
O b. 489 K
С. 341 К
d. 410 K
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.34 Show that the temperature distribution in a sphere of radius . made of a homogeneous material in which energy is released at a uniform rate per unit volume , isarrow_forwardA plane wall, 7.5 cm thick, generates heat internally at the rate of 105 W/m3. One side of the wall is insulated, and the other side is exposed to an environment at 90C. The convection heat transfer coefficient between the wall and the environment is 500 W/m2 K. If the thermal conductivity of the wall is 12 W/m K, calculate the maximum temperature in the wall.arrow_forward2.2 A small dam, which is idealized by a large slab 1.2 m thick, is to be completely poured in a short Period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m K.arrow_forward
- 1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forwardConsider a pipe with an inner radius of 15 cm, an outer radius of 20 cm, and k = 15 W / m ∙ oC.The heat transfer coefficient of the fluid in the pipe is 40 W / m2 ∙ oC, and the fluid is 500oC on average.flows with heat. The convection coefficient between the outer surface of the pipe and the surrounding air is 12 W / m2 ∙ oCand the air temperature is 20 oC. Assume that the heat conduction in the pipe is unidimensional and continuous.by,a) The main differential equation and boundary conditions for heat conduction through the pipe material.Determine.b) By solving this differential equation, the special equation that gives the temperature change in the pipe material.obtain.c) Find the pipe outer surface temperature.arrow_forwardA room is 3600 mm in height. It has wall length and width of 5 meters and 6 meters, respectively. Considering the internal temperature be 18 C and outside temperature be 30 C. Wall U = 29 W/m^2-C, floor U=15 W/m^2-C, and ceiling U = 23 W/m^2-C. The ground temperature is about 25 C. Identify the heat load through transmission in BTU/hr. please answerarrow_forward
- A plane wall 20 cm thick with uniform internal heat generation of 200 kW/m3 is exposed to a convection environment on both sides at 50◦C with h = 400 W/m2 · ◦C. Calculate the center temperature of the wall for k = 20 W/m · ◦C.arrow_forwardı need solutionarrow_forwardA plane wall is a composite of two materials, A and B. The wall of material A has uniform heat generation qG = 1.5 × 106W/m3, kA = 75 W/m⋅K, and thickness LA = 50mm. The wall material B has no generation with kB = 150 W/m⋅K and thickness LB = 20mm. The inner surface of material A is well insulated, while the outer surface of material B is cooled by a water stream with T∞ = 30°C and h = 1000 W/(m2⋅K). a. Sketch the temperature distribution that exists in the composite under steady-state conditions. b. Determine the temperature of the insulated surface and the temperature of the cooled surface.arrow_forward
- Example 10: Consider a long resistance wire of radius r1 = 0.2 cm and thermal conductivity kwire = 15 W/m·°C in which heat is generated uniformly as a result of resistance heating at a constant rate of g = 50 W/cm3. The wire is embedded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is kceramic = 1.2 W/m·°C. If the outer surface temperature of the ceramic layer is measured to be Ts = 45°C, determine the temperatures at the center of the resistance wire and the interface of the wire and the ceramic layer under steady conditions.arrow_forwardA cylindrical reactor made of copper with a radius of a= r=5mm has a heat conduction coefficient of k=386 W/moC, and there is heat generation at e ̇= (q ) ̇= 4x10^8 W/m3 inside this reactor. The cylindrical reactor convection heat transfer coefficient is h=2000 W/m0C and 〖T_(ambient= ) T〗_∞= 30 oC by convection, it cools down from the reactor surface to the center. According to the given boundary conditions a)Find the reactor surface temperature and the temperature T(a) at r=a. (VARIABLES: r=1-10mm, T_∞= 0-100oC) b) q(a) =((q ) ̇ * a )/ 2 = (e ̇ * a )/ 2 then find the heat flux amount in kW/m2arrow_forwardA plane wall, 7.5 cm thick, generates heat internally at the rate of 105 W/m3. One side of the wall is insulated, and the other side is exposed to an environment at 90°C. The convection heat transfer coefficient between the wall and the environment is 500 W/(m2 K). If the thermal conductivity of the wall is 12 W/(m K), calculate the maximum temperature in the wallarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license