Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.34P
Ring-porous woods, such as oak, are characterized by grains. dark grains consist of very low-density material that forms early in the springtime. The surrounding lighter-colored wood is composed of high-density material that forms slowly throughout most of the growing season.
Assuming the low-density material is highly porous and the oak is dry, determine the fraction of the oak cross-section that appears as being grained. Hint: Assume the thermal conductivity parallel to the grains is the same as the radial conductivity of Table A.3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. One end of a 40 cm metal rod 2.0 cm2
in cross section is in a steam bath while the other
end is embedded in ice. It is observed that 13.3 grams of ice melted in 15 minutes from the heat conducted by the rod. What is the thermal conductivity of the rod.
I need answers with clear hand writing or using Microsoft word . ASAP
PROCEDURE: for (HEAT TRANSFER THROUGH COMPOSITE WALLS)
Refer to Table 3.2 in the lecture and take the data for air, water (steam), and four other gases listed in the table. Plot the data in a graph with the thermal conductivity on the vertical axis and the temperature range from 200 K to 600 K on the horizontal axis. Use colors or different dashed lines to make the graph presentable and understandable. The graph should look like the graph in Figure 3.1 in the lecture. Provide a short explanation of the graph in three to five sentences.
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question : Calculate the heating time when four such boards are stacked together. Note 1: Don’t use Heissler charts to answer this question. Note 2: You’re free to make assumptions regarding any value you think you need in order to solve the problem. Just explain your reasoning behind your assumption in a logical manner. Note3: please explain clearly and step by steparrow_forward4arrow_forwardPlease show all step, not Ai generated.arrow_forward
- You are asked to design an insulated stud timber wall and have the following materials available: Outer skin materials. ● Plasterboard 8 mm thick (k= 0.3 W/m.K) Plasterboard 12.5 mm thick (k = 0.3 W/m.K) Insulated Plasterboard 25 mm thick (k = 0.2 W/m.K) Timber studs available (k = 0.1 W/m.K) 50 mm x 100 mm 50 mm x 120 mm 50 mm x 150 mm Insulation layers Glass fibre insulation (k= 0.05 W/m.K) ● Polyisocyanurate insulation (k= 0.025 W/m.K) Sheeps wool insulation (k= 0.04 W/m.K) ● Wall construction should consist of two outer plasterboard skins, followed by an appropriate stud/insulation infill layer. Studs can be placed vertically at 400 mm or 600 mm intervals and you may ignore any requirement for horizontal studding. 1) Draw a plan (top view) cross section of your wall indicating dimensions, spacing and material choices. 2) Calculate the thermal resistance of your wall. 3) If the internal convective heat transfer coefficient in room one is 10 W/m²K and in the second room it is 15…arrow_forwardMetal spheres, 10 mm in diameter, are to be annealed by heating them to 827°C then allowing them to cool slowly in air at 27°C to the point where they are in thermal equilibrium with the air. 2000 balls are annealed in one hour’s time. What is the total rate of their heat transfer if they are made of steel, lead, or copper? a.Sketch the problem. b.Draw lines identifying the control volume, or control mass. c.Identify the states with numbers, letters, or descriptions such as “in” and “out”. d.Write down the knowns and unknowns. e.Identify what is being asked for. f.State all assumptions.arrow_forwardThe thermal conductivity of a specific material is highly dependent on a number of factors. These include the temperature gradient, the properties of the material, and the path length that the heat follows. My question is how to add thermal conductivity? for example SS316 material has thermal conductivity=15W/mk if Gyroid shape is created with SS316 then what will be the total thermal conductivity?arrow_forward
- Nanotechnology, the field of building ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body’s oxygen transporters. Nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person’s bloodstream. If the person needed additional oxygen—due to a heart attack or for the purpose of space travel, for example—these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 25 nanometers. Suppose that each nanocontainer could contain pure oxygen pressurized to a density of 85 g/L. How many grams of oxygen could be contained by each nanocontainer?arrow_forwardNanotechnology, the field of building ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body’s oxygen transporters. Nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person’s bloodstream. If the person needed additional oxygen—due to a heart attack or for the purpose of space travel, for example—these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 25 nanometers. What is the volume of one nanocontainer? (Ignore the thickness of the nanocontainer’s wall.)arrow_forwardplease make it 1 paragraph in the abstract below, with the journal name Optimizing the thermal management system of PCM fin-structured Li-ion batteries under mechanical vibration conditions: A comparative study because I have difficulty combining can you please ask for help to try the writing below, so that the results are maximized The thermal management of battery systems using Phase Change Materials (PCM) commonly faces challenges due to the low thermal conductivity of PCM. This study introduces innovative fin structures comprising longitudinal fins and cylindrical rings to enhance heat transfer. Comparative experiments are initially designed to assess the thermal performance of various Battery Thermal Management Systems (BTMS). Results indicate that the PCM-Fin system outperforms both the pure battery system and the PCM system. Numerical simulations, validated with experimental data, uncover the underlying mechanisms. The fin structures not only increase the heat transfer area…arrow_forward
- INTRODUCTION: for (HEAT TRANSFER THROUGH COMPOSITE WALLS) PROCEDURE: for (HEAT TRANSFER THROUGH COMPOSITE WALLS)arrow_forwardWhat are valid reasons for adding Yttrium to the zirconia in the Thermal Barrier Coating (TBC) in a turbine blade? Select one or more: a. To match the thermal conductivity of the TBC to the metal substrate b. To increase the weight of the TBC c. To prevent a change of the crystallographic structure as the temperature changes d. To match the thermal conductivity of the TBC to the underlying oxide layer e. To avoid breakage during change in thermal conditionsarrow_forwardAnswer the folowing with True or False. Density of a foam material depends on the wall thickness and size of its foam cells. ( ) BCC structure is more densely packed than the FCC structure. ( ) The anion – cation size ratio has an important influence in determining the crystal structure of ionic solids. ( ) CFRP and GFRP are examples of hybrid materials. ( ) The density of a material is determined exclusively by its atomic weight. ( ) Body diagonal in BCC structure has Miller indices of [111]. ( ) The relationship s = Ee is known the Ohms law. ( ) A closed packed triangular plane in FCC crystal has Miller indices of (111). ( )arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license