Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.136P
Two long copper rods of diameter
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A single full penetration weld pass is made on a thin steel plate using a power inputof 4 kW, and welding speed 10 mm/s, resulting in a heat transfer efficiency of 85%.The material has a specific heat per unit volume ρc of 0.005 J/mm3-oC and thickness 5 mm. If the ambient temperature is 25 oC, and the melting temperature of the material is 1500 oC .Determine: a) the peak temperature at a distance of 1.0 mm from the weld fusion boundary b) the heat affected zone size.
Aluminum strips of 2 mm thickness are joined
together by resistance spot welding process by
applying an electric current 6000 A and 0.15
second. The heat required for melting aluminum
is 2.9 J/mm3. The diameter and thickness of the
weld nugget are found to be 5 mm and 2.5 mm
respectively. Assuming the electrical resistance
to be 75 micro ohms, the percentage of total
energy utilized in forming the weld nugget is
(a) 28
(c) 65
(b) 35
(d) 72
Calculate a thermal resistance of a copper tube (d1 = 0.192 mm, d2 = 0.208 mm, λ = 310 W/mK) with a Styrofoam layer of di = 0.070 mm.
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question A4 Two long, silver rods (k = 400 W/mK, diameter = 10 mm) are soldered together end to end, with the solder having a melting point of 520°C. The rods are in air at 20°C with a convection coefficient of 10 W/m?K. Ignoring radiation, what is the minimum power input needed to complete the soldering? Comment on how including radiation would have affected your calculated estimate of power needed for the soldering.arrow_forwardObtain information about K - , E - , and R -type thermocouple wires. Write a brief report discussing their accuracy, temperature range of application, and in what application they are commonly employed.arrow_forwardThe Diamond Ring Solution. The processing chip on the computer that controls the navigation equipment on your spacecraft is overheating. Unless you fix the problem, the chip will be damaged and the navigation system will shut down. You open the panel and find that the small copper disk that was supposed to bridge the gap between the smooth top of the chip and the cooling plate is missing, leaving a 2.0 mm gap between them. In this configuration, the heat cannot escape the chip at the required rate. You notice by the thin smudge of thermal grease (a highly thermally conductive material used to promote good thermal contact between surfaces) that the missing copper disk was 2.0 mm thick and had a diameter of 1.0 cm. You know that the chip is designed to run below 70 °C, and the copper cooling plate is held at a constant 5.0 °C. (a) What was the rate of heat flow from the chip to the copper plate when the original copper disk was in place and the chip was at its maximum operating…arrow_forward
- A welding operation on an aluminum alloy makes a groove weld. The cross-sectional area of the weld is 30.0 mm2. The welding velocity is 4.0 mm/sec. The heat transfer factor is 0.92 and the melting factor is 0.48. The melting temperature of the aluminum alloy is 650°C. Determine the rate of heat generation required at the welding source to accomplish this weld.arrow_forward4arrow_forwardsilicon carbide (T ≈ 300 K): k = 490 W/m⋅K .arrow_forward
- A boiler furnace wall must have a heat loss no greater than 700 Btu/hr~ft2 and is madeof a material with a thermal conductivity of 0.60 Btu/hr~ft~F. The inner wall surfacetemperature is '2000°F, and the outer surface temperature is 800°F. What wall thick~ness is required?arrow_forwardTo 8. Ti 1. 2. 3. 4" Common Brick 1/2" OSB Sheathing 3-1/2" x 1-1/2" (2x4) Yellow Pine Studding placed on 16" center 4. 5. 3-1/2" Figerglass Insulation 1/2" Drywall A wall of a house as shown in the accompanying sketch is 10 ft. high and 30 ft. long and has no windows. The outside heat transfer coefficient, h., is 6.0 Btu/hr ft2°F and the inside convective heat transfer coefficient hi is 1.45 Btu/hr ft2°F. 6. Calculate the heat loss through the wall if the house is heated such that the room air temperature, Ti, is 70°F on a day when the outside air temperature, T., is 0°F. State all assumptions and list the thermal resistances and thermal conductivities for 3 each selection of the wall. 7. For this problem, what would be the value of the overall heat transfer coefficient, U? Ans: U = 0.056 Btu/hr ft2ºF You are asked to design a metal hot dog holder for roasting hot dogs over an open campfire. The holder is to be designed such that while the end holding the hot dog becomes cherry red…arrow_forward13. A thermal micro-sensor made of polysilicon is illustrated in Figure below. It consists of a circular plate suspended by four beams. The beams have a length of L= 120 um, and a cross-section of w= 8 um by t = 4 um. An electric-heater element and two metal leads is deposited using a layer of Aluminum as shown in the Figure. Assume that the aluminum leads have a cross-section of wm = 6um and tm = 1 um. Let the electric resistance of the central heater be 1500 ohms. (a) If a voltage of 5 VDC is applied between point a and b, what is the temperature difference between the circular plate and the surrounding substrate? Assume that the surrounding substrate is at room temperature. Ignore the effects of convection and radiation. (b) (b) As part of your answer, draw the equivalent 'thermal circuit' to model the heat flow in this system. Beam Cross-Section:arrow_forward
- silicon carbide (T ≈ 300 K): k = 490 W/m⋅Karrow_forwardQuestion 1 The exterior wall of a building consists of 100 mm thick face brick (k = 0.9 W/m-K), 40 mm thick polystyrene insulating board (k = 0.036 W/m-K), 125 mm thick concrete block (k = 1.8 W/m-K) and 15 %3D mm thick interior gypsum board (k = 0.18 W/m-K). The inside and outside convective heat transfer coefficients are 6.5 W/m2-K and 22.5 W/m2-K, respectively. The outside air temperature is -5°C and the inside air temperature is 20°C. The wall is 3 m high and 15 m long. Calculate the rate of heat loss (in W) through the wall. Round your answer to 2 decimal places. Add your answer Follow-up question to Question 1, calculate the temperature (in °C) of the interior surface of the wall. Round your answer to 2 decimal places. Add your answer Follow-up question to Question 1, calculate the temperature (in °C) of the exterior surface of the wall. Round your answer to 2 decimal places. Add your answerarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY