A commercial grade cubical freezer, 3 m on a side, has a composite wall consisting of an exterior sheet of 6.35-mm-thick plain carbon steel, an intermediate layer of cork insulation, and an inner sheet of 6.35-mm-thick aluminum alloy (2024). Adhesive interfaces between the insulation and the metallic strips are each characterized by a thermal contact resistance of
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Fundamentals of Heat and Mass Transfer
- Steel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to deliver steam with a pressure of 800 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 10 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Heat loss per hour. = AnswerkJ / hr. b. Temperature between insulation layers. = Answer ° C.arrow_forwardA cold storage room has a wall consists of an inside finish of 0.60 in cement plaster(k = 0.67), two layers of corkboard each 2.5 in thick (k = 0.03) and an outside layer of building tile. The value of U for the entire wall is 0.058, the internal air filmcoefficient is 1.65, the inner temperature is 23°F and the outside temperature is85°F. Calculate the heat flow through the unit wall area, Btu/hr.ft2A. 1.47 B. 2.47 C. 3.47 D. 4.47arrow_forward5. A 10-in nominal pipe (outside diameter = 10.75in) is covered with a composite pipe insulation consisting of 2.0 in of insulation I placed next to the pipe and 1.5 in of insulation II placed upon insulation I. Assume that the inner and outer surface temperatures of the composite insulation are 900F and 150F respectively, and that the thermal conductivity of material I is 0.05 BTU/hr-ft-F and for material II is 0.039 BTU/hr-ft-F. What is the individual thermal resistance of insulation I?arrow_forward
- A dormitory at a large university, built 50 years ago, has exterior walls constructed of L, = 25-mm-thick sheathing with a thermal conductivity of k, = 0.1 W/m-K. To reduce heat losses in the winter, the university decides to encapsulate the entire dormitory by applying an L; = 25-mm-thick layer of extruded insulation characterized by k; = 0.029 W/m-K to the exterior of the original sheathing. The extruded insulation is, in turn, covered with an Lg = 5-mm-thick architectural glass with kg = 1.4 W/m-K. Determine the heat flux through the original and retrofitted walls when the interior and exterior air temperatures are Ti = 22°C and T.0 -17.5°C, respectively. The inner and outer convection heat transfer coefficients are h; = 5W/m?-K and h, = 25 W/m²-K, respectively. The heat flux through the original walls is i W/m?. The heat flux through the retrofitted walls is i W/m?.arrow_forwardA dormitory at a large university, built 50 years ago, has exterior walls constructed of L, = 25-mm-thick sheathing with a thermal conductivity of k, = 0.1 W/m-K. To reduce heat losses in the winter, the university decides to encapsulate the entire dormitory by applying an L; = 25-mm-thick layer of extruded insulation characterized by k; = 0.029 W/m-K to the exterior of the original sheathing. The extruded insulation is, in turn, covered with an L, = 5-mm-thick architectural glass with kg = 1.4 W/m-K. Determine the heat flux through the original and retrofitted walls when the interior and exterior air temperatures are Ti = 22°C and T0 -15°C, respectively. The inner and outer convection heat transfer coefficients are h; = 5 W/m?-K and h, = 25 W/m²-K, respectively. The heat flux through the original walls is i W/m?. The heat flux through the retrofitted walls is i W/m?.arrow_forwardA steel pipe (outside diameter 100 mm) is covered with two layers of insulation. The inside layer, 40 mm thick, has a thermal conductivity of 0.07 W/(m K). The outside layer, 20 mm thick, has a thermal conductivity of 0.15 W/(m K). The pipe is used to convey steam at a pressure of 600 kPa. The outside temperature of insulation is 24°C. If the pipe is 10 m long, determine the following, assuming the resistance to conductive heat transfer in steel pipe and convective resistance on the steam side are negligible: a. The heat loss per hour. b. The interface temperature of insulation.arrow_forward
- Steel pipe (outer diameter 100 mm) is covered with two layers of insulation. The inner layer, 40 mm thick, has a thermal conductivity of 0.07 W / (m K). The outer layer, 20 mm thick, has a thermal conductivity of 0.15 W / (m K). Pipes are used to delivering steam with a pressure of 600 kPa. The temperature on the outer insulation surface is 24 ° C. If the pipe is 10 m long, determine the following: (assuming that the conduction heat transfer resistance of the steel pipe and the vapor convection resistance are negligible). a. Hourly heat loss ... (kj / hr)b. temperature between insulation layers ... (° C.)arrow_forwardKindly help me to answer this thankyouarrow_forwardA dormitory at a large university, built 50 years ago, has exterior walls constructed of L, = 25-mm-thick sheathing with a thermal conductivity of ks = 0.1 W/m-K. To reduce heat losses in the winter, the university decides to encapsulate the entire dormitory by applying an L = 25-mm-thick layer of extruded insulation characterized by k; = 0.029 W/mK to the exterior of the original sheathing. The extruded insulation is, in turn, covered with an Lg = 5-mm-thick architectural glass with kg = 1.4 W/m-K. Determine the heat flux through the original and retrofitted walls when the interior and exterior air temperatures are Too₁ = 22°C and T∞,0 = -20°C, respectively. The inner and outer convection heat transfer coefficients are h; = 5 W/m²-K and h, = 25 W/m²-K, respectively. The heat flux through the original walls is i The heat flux through the retrofitted walls is i W/m². W/m².arrow_forward
- QUESTION 2 The wall of a refrigerated truck consists of 1.5mm sheet steel outer surface, 10mm plywood at the inner surface and 20mm of glass wool in between. The inside temperature is -15°C and outside temperature is 24°C. Take the thermal conductivities of the materials as follows: - =0,052W/mK = 23,2W/mK k for glass-wool = 0,14W/mK k for plywood k for steel %3D Calculate: 2.1. the rate of heat flow per unit area; 2.2. the interface temperature. If the glass-wool is replaced by a 5mm cork board with a thermal conductivity of 0.043W/mK; 2.3. What percentage change in heat flow is obtained? 2.4. What must be the thickness of the cork board be, to achieve the same heat flow as in (2.1.).arrow_forward5. A pipe with an outside diameter of 2.5 inches is insulated with 2 inches layer of asbestos (k = 0.396 Btu- in/hr-ft²-°F), followed by a layer of cork 1.5 inches thick (k = 0.30 Btu-in/hr-ft²-°F). If the temperature at the inner surface of the pipe is 290°F and at the outer surface of the cork is 90°F, calculate the heat loss per 100 ft of insulated pipe. (Btu/hr)arrow_forwardAs2 Calculate the temperature 7 cm into the mineral wool layer from the warm side measured in one wall that is built from the outside in according to the following material layers: Wood panel ventilated R = 0.20 m2K / W Mineral wool 200 mm λ = 0.033 W / mK Plastic foil R ≈ 0 m2K / W Plasterboard 13 mm λ = 0.22 W / mK The temperature outside is -10 ◦C and inside 22 ◦C. The heat transfer resistors are on the inside Rsi = 0, 13 and on the outside Rse = 0, 04 m2K / Warrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY