Concept explainers
The composite wall of an oven consists of three materials, two of which are of known thermal conductivity,
Under steady-state operating conditions, measurements reveal an outer surface temperature of
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Fundamentals of Heat and Mass Transfer
- Homework O H.W. 1: The walls of a refrigerator are typically constructed by sandwiching a layer of insulation between sheet metal panels. Consider a wall made from fiberglass insulation of thermal conductivity k; = 0.046 W/m.K and thickness L, = 50 mm and steel panels, each of thermal conductivity k, = 60 W/m.K and thickness L, = 3 mm. If the wall separates refrigerated air at T = 4 C from ambient air at T,. = 25 C, what is the heat gain per unit surface area? Coefficients associated with natural convection at the inner and outer surfaces may be approximated as h, = h, = 5 W/m?.K. %3D %3D L; = 0.050 m K K Lo = 0.003 m Refrigerated air Ambient air Too.i = 4°C hi = 5 W/m2-K To,o = 25°C ho = 5 W/m2-K %3D Panel (2) kp = 60 W/m-K Insulation k; = 0.046 W/m-K 22 Warith Alanbiyaa (Dr. ALI M) Heat Transfer Page 11 ofarrow_forwardA thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature f(x) = 300 degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant O degrees C. Let u(x, t) be the temperature in the bar at x at timet, with t measured in seconds. Find u(x, t) and then u7 (2, 0.1). Put uz (2, 0.1) calculated accurately to the nearest thousandth (3 decimal places) in the answer box.arrow_forwardA thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature f(x) = 50 degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4 (2, 0.1). Put u4(2, 0.1) calculated accurately to the nearest thousandth (3 decimal places) in the answer box.arrow_forward
- 4x F2 # 3 E 4, F3 54 $ R F4 Ac = 1m² ▬ H DII x= 1 m (4) Consider a wall (as shown above) of thickness L-1 m and thermal conductivity k-1 W/m-K. The left (x=0) and the right (x=1 m) surfaces of the wall are subject to convection with a convectional heat transfer coefficient h= 1 W/m²K and an ambient temperature T. 1 K. There is no heat generation inside the wall. You may assume 1-D heat transfer, steady state condition, and neglect any thermal contact resistance. Find T(x). % To,1 = 1 K h₁ = 1 W/m²K 5 Q Search F5 T T₁ A 6 x=0 F6 à = 0 W/m³ k= 1W/mK L=1m Y 994 F7 & 7 T₂ U Ton2 = 1 K h₂ = 1 W/m²K1 PrtScn F8 Page of 7 ) 0 PgUp F11 Parrow_forwardA temperature difference of 85 •C is impressed across a fiberglass layer of 13 cm thickness. The thermal conductivity of the fiberglass is 0.035 W/m • -C. Compute the heat transferred through the material in kcal per hour per unit square meter area.arrow_forwardA composite wall of a refrigerator consists of three different materials; A, B, and C. Two of the used materials have known thermal conductivity, KA = 30 W/m. K and kc-45 W/m. K, and known thickness, LA=0.20 m and Lc = 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, LB = 0.15 m, but unknown thermal conductivity kB. Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o= 20°C, an inner surface temperature of Ts,i = 600°C, and a refrigerator air temperature of Too = 800°C. The inside convection coefficient h is known to be 25 W/m².K. (a) First, draw the thermal circuit for this wall. (b) What is the value of thermal conductivity for material B? Tsi Air To, h KA K₂ kc Lg Lc Figure 2: Composite wall configuration described in problem 3.arrow_forward
- Q3: A steam pipe of outside temperature of (T = 500 °C) and outside radius of (R. 100 mm) is insulated with three layers of thermal insulation materials of equal thickness of (t 100 mm), as shown in Fig. Q.3. The thermal insulation is exposed to an ambient temperature of (T = 20 °C). If the thermal conductivity of the thermal insulation layers are (K₁ = 0.4 W/m. K), (K₂ = 0.25 W/m. K) and (K3 = 0.1 W/m. K) and the convection heat transfer coefficient is (h = 40 W/m2.K). Find the temperature distribution along the three layers of thermal insulation materials using the FVM with a uniform grid of (Ar = 50 mm). The one- dimensional steady state energy equation for this problem is given as follows: 1 d r dr (rk: dT = 0 h-40 W/m².K T-20°C 7,500 C Fig. Q.3 K₁ =0.4 W/m.K K₁ = 0.25 W/m.K K₁ 0.1 W/m.Karrow_forwardThe inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. Illustrate the order of arrangement of bricks A and B in the furnace wall (with thickness, estimated temperatures at the interface between walls A and B and at the interior and exterior surface, the transport area and direction of transfer included)arrow_forwardThe inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. If a 15 ft2 wall is to be constructed, how many bricks will be used? how many brick A and how many brick B?arrow_forward
- The inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. Model the wall as one-dimensional and determine the most economical arrangement of the bricks. Include:a drawing labeled with all given informationthe variables used in the appropriate places on the drawing (along with values and units, if provided)a thermal circuit showing the paths for heat transmissionequations and calculationsCalculations that show that the maximum temperature for Type A brick does not exceed 1400oFA recommendation for the number and orientation of the bricks. The inside temp is 2100f…arrow_forwardThe inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. What is the rate of heat conduction through wall A? If a 15 ft2 wall is to be constructed, how many bricks will be used? how many brick A and how many brick B?arrow_forwardsolve this problem and dont reject it plzzarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY