Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.166P
To determine
The heat generation rate to keep skin temperature constant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What external data can I use to support the claim that the consumers living within regions with hot climate will buy the stainless steel pan with digital thermometer reading that is powered by the heat generated while cooking and that sales will be higher in summer?
You are designing a new eco-friendly thermal coffee mug. It is shaped like a small globe to minimize surface area, which is only about 0.04m^2. You use two 0.003m layers of recyclable PETE which has a thermal conductivity, k, of 0.2W/mK around a 0.01m layer of dead air, with a thermal conductivity of 0.026W/mK. Since this is for hot coffee, use a temperature difference of 40K. Q = Ax (T2-T1) / (R1 + R2 + etc) R =x/k.
What is the heat lose through the surface in watts?
Question 1: In your own words, write down the differences
between thermodynamic and heat transfer. (3 Marks)
Question 2: Estimate the heat loss per square metre of surface
through a brick wall 0.5 m thick when the inner surface is at 400
K and the outside surface is at 300 K. The thermal conductivity
of the brick may be taken as 0.7 W/mK. (2 Marks)
Question 3: A furnace is constructed with 0.20 m of firebrick,
0.10 m of insulating brick, and 0.20 m of building brick. The
inside temperature is 1200 K and the outside temperature is 330
K. If the thermal conductivities are as shown in the figure below,
estimate the heat loss per unit area. (5 Marks)
1200 K
330 K
Fire brick
X=0.20 m
Insulating
brick
x=0.10 m
Ordinary
brick
X=0.20 m
k = 1.4
k = 0.21
k = 0.7
(WimK)
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A person wearing a heavy parka is standing in a cold wind. Describe the modes of heat transfer determining heart loss from the person's body.arrow_forwardOne end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forwardRadioactive wastes are packed in a thin-walled spherical container. The wastes generate thermal energy nonuniformly according to the relation ġ = ġ, 1–(r/r.)* | where ġ is the local rate of energy generation per unit volume, ġ, is a constant, and r, is the radius of the container. Steady- state conditions are maintained by submerging the container in a liquid that is at T, and provides a uniform convection coefficient h. Coolant T, h - ġ = 4, [1– (rlr,²] 11arrow_forward
- the hot combustion gasses of a furnace are separated from the ambient air and its surroundoing which are at 25c, by a brick wall 0.15 meter thick has a thermal conductivity of 1.2 w/(m-k) and a surface emissivity of 0.8. under steady state condition and outer surface temperature of 100c is measured. the convection heat transfer to the air adjoining this surface is characterized by a convection of 20 /(m-k), what is the inner temperature?arrow_forwardThe composite wall of a furnace consists of three different materials, two of which have known thermal conductivity (ka = 20 W/m°C and kc = 50 W/m°C) and thicknesses La = 0.30 m and Lb = 0.15 m. The third material (B) is between A and C, with a thickness of 0.15 m, but its thermal conductivity (kb) is unknown. Under steady-state operating conditions, measurements reveal a temperature of 20 °C on the external surface, 600 °C on the internal surface, and a furnace ambient temperature of 800 °C. The internal convection coefficient is 25 W/m²°C. What is the value of kb?arrow_forwardA plane wall of an oven with an insulation coating is attached to an insulated wall. The thermal conductivity and thickness of the insulation coating are 0.1 W/(m K) and 1 mm, respectively. The material of the plane wall is stainless steel 304. The density, thermal conductivity, and specific heat capacity of the stainless steel 304 are 7900 kg/m³, 74.9 W/(m K), and 477 J/(kg K). respectively. The wall thickness of the stainless steel 304 is 15 mm. The temperature of the plane wall with the insulated coating is initially maintained at 30 °C. Suddenly, hot gas with a temperature of 1000 °C enters the oven. The convection heat transfer coefficient at the insulation coating surface is 70 W/(m²K). Insulation Coating Stainless Steel 304 Oven Gas Perfectly Insulated Wall L 3-1) What is the overall heat transfer coefficient per unit area from the gas to the surface of the stainless steel? The answer should be given in the unit of W/(m²K). 3-2) What is the value of the Biot number? 3-3) What is…arrow_forward
- A finned surface has been added to cool an electronic part. The surface temperature of the electronic part in contact with the fins is 60 ° C, the convection coefficient between the environment and the finned surface is 40 W / m? .K and the thermal conductivity coefficient for the fin material (aluminum) is 180 W / m.K. a. The amount of Heat (W) per unit time thrown into the environment in case the electronic part has wings or no blades, b. Find out wing effectiveness and efficiency?arrow_forwardno previous attempt pleasearrow_forwardThe composite wall of an oven consists of three materials, two of which are of known thermal conductivity, kA 20 W/m K and kC50 W/m K, and known thickness, LA 0.30 m and LC 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, LB 0.15 m, but unknown thermal conductivity kB. Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o 20°C, an inner surface temperature of Ts,i 600°C, and an oven air temperature of T 800°C. The inside convection coefficient h is known to be 25 W/m2 K. What is the value of kB?arrow_forward
- Only find floorarrow_forwardA plane wall of an oven with an insulation coating is attached to an insulated wall. The thermal conductivity and thickness of the insulation coating are 0.1 W/(m K) and 1 mm, respectively. The material of the plane wall is stainless steel 304. The density, thermal conductivity, and specific heat capacity of the stainless steel 304 are 7900 kg/m³, 74.9 W/(mK), and 477 J/(kg-K), respectively. The wall thickness of the stainless steel 304 is 15 mm. The temperature of the plane wall with the insulated coating is initially maintained at 30 °C. Suddenly, hot gas with a temperature of 1000 °C enters the oven. The convection heat transfer coefficient at the insulation coating surface is 70 W/(m²-K). Insulation Coating Stainless Steel 304 Oven Gas Perfectly Insulated Wall 1 X L 3-1) What is the overall heat transfer coefficient per unit area from the gas to the surface of the stainless steel? The answer should be given in the unit of W/(m²-K). 3-2) What is the value of the Biot number? 3-3)…arrow_forwardA plane wall of an oven with an insulation coating is attached to an insulated wall. The thermal conductivity and thickness of the insulation coating are 0.1 W/(m K) and 1 mm, respectively. The material of the plane wall is stainless steel 304. The density, thermal conductivity, and specific heat capacity of the stainless steel 304 are 7900 kg/m³, 74.9 W/(mK), and 477 J/(kg K), respectively. The wall thickness of the stainless steel 304 is 15 mm. The temperature of the plane wall with the insulated coating is initially maintained at 30 °C. Suddenly, hot gas with a temperature of 1000 °C enters the oven. The convection heat transfer coefficient at the insulation coating surface is 70 W/(m²K). Insulation Coating Stainless Steel 304 Oven Gas Perfectly Insulated Wall 3-1) What is the overall heat transfer coefficient per unit area from the gas to the surface of the stainless steel? The answer should be given in the unit of W/(m²K). 3-2) What is the value of the Biot number?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY