Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.155P
Determine the percentage increase in heat transfer associated with attaching aluminum fins of rectangular profile to a plane wall. The tins are 50 mm long,0.5 mm thick, and are equally spaced at a distance of 4 mm (250 fins/m). The convection coefficient associated with the bare wall is
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Q2 fin made of AL metal with thermal conductivity (199 W / mK). Fin dimensions 3 cm long and 2.5 mm thick, extending from a wall and exposed to air at the end. Wall temperature 420 ° C and air temperature 25 ° C. Calculate the heat loss from the fin and the fin efficiency. Assume the heat transfer coefficient of 10 W / m K and neglect the heat loss at the fin tip. Explain the importance of assuming isolated n fin end in practice
20-m pipe has an outside diameter of 50 mm. Pipe is insulated with a layer of
asbestos, then followed by a layer of cork. Inside and outside diameter of the
cork is 77 mm and 80 mm, respectively. If the temperature drop from pipe to
cork is 1165°C, calculate the inside diameter of the pipe (mm). The rate of the
heat transfer is 8778 W. The thermal conductivity of steam pipe, asbestos and
cork are 0.045 kW/m-K, 0.058 W/m-K and 0.043 W/m-K respectively.
A composite wall layer consists of layer A covered by layer B. The thermal resistance of layer A is
0.75 °C/W and the thermal resistance of layer B is 2.50 °C/W. The exposed surface of layer A is at a
temperature of 60°C. If the heat transfer per unit area across the composite wall is 30 W/m?, what is the
temperature at the interface between layer A and layer B? Express your answer in °C.
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.1 On a cold winter day, the outer surface of a 0.2-m-thick concrete wall of a warehouse is exposed to temperature of –5°C, while the inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/m K. Determine the heat loss through the wall, which is 10-m long and 3-m high. Problem 1.1arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forward
- 1.2 The weight of the insulation in a spacecraft may be more important than the space required. Show analytically that the lightest insulation for a plane wall with a specified thermal resistance is the insulation that has the smallest product of density times thermal conductivity.arrow_forward1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forwardOne end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward
- As a designer working for a major electric appliance manufacturer, you are required to estimate the amount of fiberglass insulation packing (k = 0.035 W/m K) that is needed for a kitchen oven shown in the figure below. The fiberglass layer is to be sandwiched between a 2-mm-thick aluminum cladding plate on the outside and a 5-mm-thick stainless steel plate on the inside that forms the core of the oven. The insulation thickness is such that the outside cladding temperature does not exceed 40C when the temperature at the inside surface of the oven is 300C. Also, the air temperature in the kitchen varies from 15Cto33C, and the average heat transfer coefficient between the outer surface of the oven and air is estimated to be 12.0W/m2K. Determine the thickness of the fiberglass insulation that is required for these conditions. What would be the outer surface temperature when the inside surface of the oven is at 475C?arrow_forward1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward2. A refrigerated cold room wall has a thickness of 100mm and a thermal conductivity 0.14 W/m-K. The room wall has a 60mm thick internal lining of cork having a thermal conductivity of 0.05 W/m.K. The thermal conductance between the exposed faces and the respective atmosphere is 12 W/m²-K. If the room is maintained at 0°C and the external atmospheric temperature is 20°C, Calculate the heat loss rate through 1m² of the wall.arrow_forward
- a flat wall is covered with a layer of insulation 1.0 in. thick whose thermal conductivity is 0.8 Btu/hr-ft- F. the temperature of the wall on the inside of the insulation is 600F. the wall loses heat to the environment by convection on the surface of the insulation. the average value of the convection heat transfer coefficient on the inslation surface is 950 Btu/hr-ft^2-F. compute the bulk temperature of the environment if the outer surface of the insulation does not exceed 105 F.arrow_forwardHow many inches of insulation are required to insulate a ceiling such that the surface temperature of the ceiling facing the living area is within 2°C of the room air temperature? Assume a heat transfer coefficient on both sides of the ceiling of 2.84 W/(m2 • K) and a thermal conductivity of 0.0346 W/(m . K) for the insulation. The ceiling is 1.27 cm thick plasterboard with a thermal conductivity of 0.433 W/(m . K). Room temperature is 20°C and attic temperature is 49°C.arrow_forwardA furnace of 0.3m by 0.3m by 0.6m inside dimensions is constructed of a material having a thermal conductivity of 0.894 W/m.K. The wall thickness is 10cm. The inner and outer surface temperatures are 600 degree Celcius and 100 degree Celcius respectively. Calculate the heat loss through the furnace wall by using (i) Conduction shape factor. (ii) Thermal resistance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license