Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.76P
To determine
The radial position in the insulation layer.
To determine
Discussion about the formation of the ice in the insulation and the impact ice formation will have on heat gain to LP gas and the situation be avoided.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A composite wall layer consists of layer A covered by layer B. The thermal resistance of layer A is
0.75 °C/W and the thermal resistance of layer B is 2.50 °C/W. The exposed surface of layer A is at a
temperature of 60°C. If the heat transfer per unit area across the composite wall is 30 W/m?, what is the
temperature at the interface between layer A and layer B? Express your answer in °C.
flat wall is exposed to the environment. The wall is
covered with a layer of insulation 1.0 in. thick whose
thermal conductivity is
temperature of the wall on the inside of the insulation
is 600°F. The wall loses heat to the environment by
convection on the surface of the insulation. The
0.8 Btu/hr-ft-°F. The
average value of the convection heat transfer
coefficient
the insulation
surface is
950
on
Btu/hr-ft-°F. Compute the bulk temperature of the
environment (T) if the outer surface of the insulation
does not exceed 105°F.
A 3 inch schedule 40 pipe is covered with two layers of
insulations. The inner layer (k1 = 0.050) is 2 inches thick and
the outer layer (k2 = 0.037) is 1(1/4) inches thick. Calculate
the heat loss, in Btu/hr per unit length, if the outer surface
temperature of the pipe is 670°F and the outer surface
temperature of the outer layer of insulation is 100°F.
Chapter 3 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - The walls of a refrigerator are typically...Ch. 3 - A t=10-mm -thick horizontal layer of water has a...Ch. 3 - A technique for measuring convection heat transfer...Ch. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Determine the thermal conductivity of the carbon...Ch. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Consider the composite wall of Problem 3.13 under...Ch. 3 - Consider a composite wall that includes an...Ch. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an automobile...Ch. 3 - The thermal characteristics of a small, dormitory...Ch. 3 - In the design of buildings, energy conservation...Ch. 3 - When raised to very high temperatures. many...Ch. 3 - A firefighter's protective clothing, referred to...Ch. 3 - A particular thermal system involves three objects...Ch. 3 - A composite wall separates combustion gases at...Ch. 3 - Approximately 106 discrete electrical components...Ch. 3 - Two stainless steel plates 10 mm thick are...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - The performance of gas turbine engines may be...Ch. 3 - A commercial grade cubical freezer, 3 m on a side,...Ch. 3 - Physicists have determined the theoretical value...Ch. 3 - Consider a power transistor encapsulated in an...Ch. 3 - Ring-porous woods, such as oak, are characterized...Ch. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Determine the density, specific heat, and thermal...Ch. 3 - A one-dimensional plane wall of thickness L is...Ch. 3 - The diagram shows a conical section fabricated...Ch. 3 - A truncated solid cone is of circular cross...Ch. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Measurements show that steady-state conduction...Ch. 3 - A device used to measure the surface temperature...Ch. 3 - A steam pipe of 0.12-m outside diameter is...Ch. 3 - Consider the water heater described in Problem...Ch. 3 - To maximize production and minimize pumping costs....Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - A stainless steel (AISI 304) tube used to...Ch. 3 - A thin electrical heater is inserted between a...Ch. 3 - A 2-mm-diameter electrical wire is insulated by a...Ch. 3 - Electric current flows through a long rod...Ch. 3 - A composite cylindrical wall is composed of two...Ch. 3 - An electrical current of 700 A flows through a...Ch. 3 - A 0.20-m-diameter. thin-walled steel pipe is used...Ch. 3 - An uninsulated. thin-walled pipe of 100-mm...Ch. 3 - Steam flowing through a long. thin-walled pipe...Ch. 3 - A storage tank consists of a cylindrical section...Ch. 3 - Consider the liquid oxygen storage system and the...Ch. 3 - A spherical Pyrex glass shell has inside and...Ch. 3 - In Example 3.6. an expression was derived for the...Ch. 3 - A hollow aluminum sphere. with an electrical...Ch. 3 - A spherical tank for storing liquid oxygen on the...Ch. 3 - A spherical, cryosurgical probe may be imbedded in...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - A composite spherical shell of inner radius...Ch. 3 - The energy transferred from the anterior chamber...Ch. 3 - The outer surface of a hollow sphere of radius r2...Ch. 3 - A spherical shell of inner and outer radii r1 and...Ch. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The air inside a chamber at T,i=50C is heated...Ch. 3 - Prob. 3.80PCh. 3 - A plane wall of thickness 0.1 m and thermal...Ch. 3 - Large, cylindrical bales of hay used to feed...Ch. 3 - Prob. 3.83PCh. 3 - Consider one-dimensional conduction in a plane...Ch. 3 - Consider a plane composite wall that is composed...Ch. 3 - An air heater may be fabricated by coiling...Ch. 3 - Prob. 3.87PCh. 3 - Consider uniform thermal energy generation inside...Ch. 3 - A plane wall of thickness and thermal conductivity...Ch. 3 - A nuclear fuel element of thickness 21, is covered...Ch. 3 - In Problem 3.79 the strip heater acts to guard...Ch. 3 - The exposed surface (x=0) of a plane wall of...Ch. 3 - A quartz window of thickness L serves as a viewing...Ch. 3 - For the conditions described in Problem 1.44....Ch. 3 - A cylindrical shell of inner and outer radii, ri...Ch. 3 - The cross section of a long cylindrical fuel...Ch. 3 - A long cylindrical rod of diameter 200 mm with...Ch. 3 - A radioactive material of thermal conductivity k...Ch. 3 - Radioactive wastes are packed in a thin-walled...Ch. 3 - Radioactive wastes (ktw=20W/mK) are stored in a...Ch. 3 - Unique characteristics of biologically active...Ch. 3 - Consider the plane wall, long cylinder, and sphere...Ch. 3 - One method that is used to grow nanowires...Ch. 3 - Consider the manufacture of photovoltaic silicon,...Ch. 3 - Copper tubing is joined to a solar collector plate...Ch. 3 - A thin flat plate of length L thickness t. and...Ch. 3 - The temperature of a flowing gas is to be measured...Ch. 3 - A thin metallic wire of thermal conductivity k,...Ch. 3 - A motor draws electric power Pelec from a supply...Ch. 3 - Consider the fuel cell stack of Problem 158. The...Ch. 3 - Consider a rod of diameter D, thermal conductivity...Ch. 3 - A carbon nanotube is suspended across a trench of...Ch. 3 - A probe of overall length L=200mm and diameter...Ch. 3 - A metal rod of length 2L diameter D, and thermal...Ch. 3 - A very long rod of 5-mm diameter and uniform...Ch. 3 - From Problem 1.71, consider the wire leads...Ch. 3 - Turbine blades mounted to a rotating disc in a...Ch. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - A brass rod 100 mm long and 5 mm in diameter...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A pin fin of uniform. cross-sectional area is...Ch. 3 - The extent to which the tip condition affects the...Ch. 3 - A straight tin fabricated from 2024 aluminum alloy...Ch. 3 - Triangular and parabolic straight tins are...Ch. 3 - Two long copper rods of diameter D=10mm are...Ch. 3 - Circular copper rods of diameter D=1mm and length...Ch. 3 - During the initial stages of the growth of the...Ch. 3 - Consider two long, slender rods of the same...Ch. 3 - A 40-mm-long, 2-mm-diameter pin fin is fabricated...Ch. 3 - An experimental arrangement for measuring the...Ch. 3 - Finned passages are frequently formed between...Ch. 3 - The fin array of Problem 3.142 is commonly found...Ch. 3 - An isothermal silicon chip of width W=20mm on a...Ch. 3 - As seen in Problem 3.109, silicon carbide...Ch. 3 - A homeowner's wood stove is equipped with a top...Ch. 3 - Water is heated by submerging 50-mm-diameter,...Ch. 3 - As a means of enhancing heat transfer from...Ch. 3 - Consider design B of Problem 3.151. Over time....Ch. 3 - Determine the percentage increase in heat transfer...Ch. 3 - Aluminum fins of triangular profile are attached...Ch. 3 - An annular aluminum fin of rectangular profile is...Ch. 3 - Annular aluminum fins of rectangular profile are...Ch. 3 - It is proposed to air-cool the cylinders of a...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - A nanolaminated material is fabricated with an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.2 The weight of the insulation in a spacecraft may be more important than the space required. Show analytically that the lightest insulation for a plane wall with a specified thermal resistance is the insulation that has the smallest product of density times thermal conductivity.arrow_forwardAs a designer working for a major electric appliance manufacturer, you are required to estimate the amount of fiberglass insulation packing (k = 0.035 W/m K) that is needed for a kitchen oven shown in the figure below. The fiberglass layer is to be sandwiched between a 2-mm-thick aluminum cladding plate on the outside and a 5-mm-thick stainless steel plate on the inside that forms the core of the oven. The insulation thickness is such that the outside cladding temperature does not exceed 40C when the temperature at the inside surface of the oven is 300C. Also, the air temperature in the kitchen varies from 15Cto33C, and the average heat transfer coefficient between the outer surface of the oven and air is estimated to be 12.0W/m2K. Determine the thickness of the fiberglass insulation that is required for these conditions. What would be the outer surface temperature when the inside surface of the oven is at 475C?arrow_forward1.1 On a cold winter day, the outer surface of a 0.2-m-thick concrete wall of a warehouse is exposed to temperature of –5°C, while the inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/m K. Determine the heat loss through the wall, which is 10-m long and 3-m high. Problem 1.1arrow_forward
- A cold-storage room is constructed of an inner layer of 11 mm of pine with thermal conductivity of 0.15 W/m K, and an outer layer of 75 mm of concrete with thermal conductivity of 0.75 W/m K. The wall surface temperature is 253 K inside the cold room and 299 K at the outside surface of the concrete. Calculate the heat loss in W per 1 m2. Please keep one decimal and take positive value for the final answer.arrow_forwarda flat wall is covered with a layer of insulation 1.0 in. thick whose thermal conductivity is 0.8 Btu/hr-ft- F. the temperature of the wall on the inside of the insulation is 600F. the wall loses heat to the environment by convection on the surface of the insulation. the average value of the convection heat transfer coefficient on the inslation surface is 950 Btu/hr-ft^2-F. compute the bulk temperature of the environment if the outer surface of the insulation does not exceed 105 F.arrow_forwardA thermometric well is placed in a pipe having diameter of 55 mm. Pipe wall temperature is 100°C and heat transfer coefficient inside the pipe is 300 W/m² K. Thickness of thermowell is 1.2 mm and its length is 50 mm. Thermal conductivity of thermowell material. Is 30 W/mK. If the temperature of the gas flowing through the pipe is recorded by thermometer as 200°C, determine the true temperature of gas. If the error in gas temperature is to be reduced by 80% by increasing the length of thermowell, determine the new length of thermowell. Draw a sketch of this thermowell. Take perimeter to area ratio for thermowell as 1/T (T= thickness).arrow_forward
- 20-m pipe has an outside diameter of 50 mm. Pipe is insulated with a layer of asbestos, then followed by a layer of cork. Inside and outside diameter of the cork is 77 mm and 80 mm, respectively. If the temperature drop from pipe to cork is 1165°C, calculate the inside diameter of the pipe (mm). The rate of the heat transfer is 8778 W. The thermal conductivity of steam pipe, asbestos and cork are 0.045 kW/m-K, 0.058 W/m-K and 0.043 W/m-K respectively.arrow_forwardCalculate the heat loss through a 3-in. thick insulation board that has an area of 2- ft² and a k-value of 0.25. Assume the average temperature difference across the material is 70°F. Q = 11.66-Btu/hr Q = 10.99-Btu/hr Q = 10.66-Btu/hr Q = 11.99-Btu/hr Hide hint for Question 1 Utilize the (Q = k*A*AT/thickness) equation.arrow_forward1. A pipe is covered with three insulation layers where the corresponding thicknesses are 150 mm, 250mm and 300mm and the respective thermal conductivities are 3.2 W/m°C, 2.1 W/m°C and 1.5 W/m C. The length of the pipe is 3m. The inner side of the pipe which has a diameter of 300 mm is exposed to a hot gas at 1000 °C with convection coefficient of 50 W/m2°C and the temperature of the inner side of the pipe surface is 800 °C. The air outside the pipe is at 25°C with a convection coefficient of 35 W/m2°C. a. Draw a schematic diagram which shows the heat transfer process b. Calculate the Heat transfer rate c. The overall heat transfer coefficient "U" of the system based on the inner pipe d. Temperature at each of the layers and at the outermost surface of the pipe.arrow_forward
- A 100 mm diameter steam pipe is covered by two layers of lagging (insulation). The inside layer is 40 mm thick and has a thermal conductivity of 0.07 W/m K. The outside layer is 25 mm thick and has a thermal conductivity of 0.1 W/mK. The pipe carries steam at a temperature of 234°C , where the outside temperature of lagging is 24°C. If the steam pipe is 20 m long, determine (a) The heat lost per hour, (b) The interface temperature of lagging. Neglect the resistance of steam pipe as well as the convection resistances.arrow_forwardA steam bath center in a gym consists of a wall three different material layers. First two layers have thermal conductivity of 5 W/m K, 10 W/m K and 2*(10) W/m K respectively. All three layers have thickness of 8 cm each. The inside wall surface temperature of steam room is 80 °C whereas outside surface temperature is 25 °C. Draw this composite wall. Calculate the heat transfer per unit length of the wall.arrow_forwardThe walls of the flat furnace are connected by two insulating layers A and B. The temperature of the insulating layer A facing the inside of the Furnace is 800°C and the temperature of the outside air is 60°C. Find the temperature of the interface between the two insulation layers when the thickness of insulation layer A is 150 mm, its thermal conductivity is 0.05 W/m℃, the thickness of insulation layer B is 240 mm, and its thermal conductivity is 0.15 W/m℃arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
composite-materials; Author: Tonya Coffey;https://www.youtube.com/watch?v=Vu6ik-bcKf4;License: Standard youtube license