General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 23, Problem 23.89EP

Indicate whether each of the following changes represents oxidation or reduction.

  1. a. CoQH2 → CoQ
  2. b. NAD+ → NADH
  3. c. Cyt c (Fe2+) → cyt c (Fe3+)
  4. d. Cyt b (Fe3+) → cyt b (Fe2+)

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Whether the change CoQH2CoQ represents oxidation or reduction has to be identified.

Concept Introduction:

Electron transport chain is a sequence of biochemical reactions in which electrons and hydrogen atoms from the citric acid cycle are transferred to various intermediate carriers and finally reacts with molecular oxygen to form a water molecule.

There are four complexes associated with the electron transport chain that is present in the inner mitochondrial membrane. The four complexes that help in the electron transfer in the electron transport chain are:

Complex I: NADH-coenzymeQ reductase

Complex II: Succinate-coenzymeQ reductase

Complex III: CoenzymeQ-cytochrome c reductase

Complex IV: Cytochrome c oxidase

An overview of the electron transport chain is as follows:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.89EP , additional homework tip  1

Redox reactions involve oxidation and reduction reaction occurring simultaneously so that one species is oxidized and the other one is reduced. The species that gain hydrogen or electron is known as reduced form and the species that loss hydrogen or electron is known as oxidized form. The general representation of the redox reaction is,

  A+H++eAH

Here A is oxidized form and AH is reduced form.

Answer to Problem 23.89EP

The change CoQH2CoQ represents oxidation as there is a loss of hydrogen in the reaction.

Explanation of Solution

Coenzyme Q is used to transfer the electrons from the complex I, II to complex III. Coenzyme Q exists in two forms: CoQH2(reduced form) and CoQ(oxidized form).  The change of CoQH2 to CoQ represent the oxidation reaction as hydrogen atoms are lost.  The reaction of the reduction of CoQH2 is:

  CoQH2CoQ+2H++2e

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Whether the change NAD+NADH represents oxidation or reduction has to be identified.

Concept Introduction:

Electron transport chain is a sequence of biochemical reactions in which electrons and hydrogen atoms from the citric acid cycle are transferred to various intermediate carriers and finally reacts with molecular oxygen to form a water molecule.

There are four complexes associated with the electron transport chain that is present in the inner mitochondrial membrane. The four complexes that help in the electron transfer in the electron transport chain are:

Complex I: NADH-coenzymeQ reductase

Complex II: Succinate-coenzymeQ reductase

Complex III: CoenzymeQ-cytochrome c reductase

Complex IV: Cytochrome c oxidase

An overview of the electron transport chain is as follows:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.89EP , additional homework tip  2

Redox reactions involve oxidation and reduction reaction occurring simultaneously so that one species is oxidized and the other one is reduced. The species that gain hydrogen or electron is known as reduced form and the species that loss hydrogen or electron is known as oxidized form. The general representation of the redox reaction is,

  A+H++eAH

Here A is oxidized form and AH is reduced form.

Answer to Problem 23.89EP

The change NAD+NADH represents reduction as there is a gain of hydrogen in the reaction.

Explanation of Solution

In complex I, electrons are transferred from the NADH molecule produced in the citric acid cycle. Initially NADH interacts with complex I and gets oxidized to form NAD+. The reaction of the reduction of NAD+ is:

  NAD++2H++2eReductionNADH+H+

The change of NAD+ to NADH represent the reduction reaction as hydrogen atoms are gained in the reaction.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Whether the change cytc(Fe2+)cytc(Fe3+) represents oxidation or reduction has to be identified.

Concept Introduction:

Electron transport chain is a sequence of biochemical reactions in which electrons and hydrogen atoms from the citric acid cycle are transferred to various intermediate carriers and finally reacts with molecular oxygen to form a water molecule.

There are four complexes associated with the electron transport chain that is present in the inner mitochondrial membrane. The four complexes that help in the electron transfer in the electron transport chain are:

Complex I: NADH-coenzymeQ reductase

Complex II: Succinate-coenzymeQ reductase

Complex III: CoenzymeQ-cytochrome c reductase

Complex IV: Cytochrome c oxidase

An overview of the electron transport chain is as follows:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.89EP , additional homework tip  3

Redox reactions involve oxidation and reduction reaction occurring simultaneously so that one species is oxidized and the other one is reduced. The species that gain hydrogen or electron is known as reduced form and the species that loss hydrogen or electron is known as oxidized form. The general representation of the redox reaction is,

  A+H++eAH

Here A is oxidized form and AH is reduced form.

Answer to Problem 23.89EP

The change cytc(Fe2+)cytc(Fe3+) represents oxidation as there is a loss of an electron in the reaction.

Explanation of Solution

cyt c is used to transfer the electrons from complex III to complex IV and consists of iron that changes its oxidation state. Iron in cytc(Fe2+) undergoes oxidation and leads to the formation of cytc(Fe3+). The reaction to this change is:

  cytc(Fe2+)cytc(Fe3+)+e

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Whether the change cytb(Fe3+)cytb(Fe2+) represents oxidation or reduction has to be indicated.

Concept Introduction:

Electron transport chain is a sequence of biochemical reactions in which electrons and hydrogen atoms from the citric acid cycle are transferred to various intermediate carriers and finally reacts with molecular oxygen to form a water molecule.

There are four complexes associated with the electron transport chain that is present in the inner mitochondrial membrane. The four complexes that help in the electron transfer in the electron transport chain are:

Complex I: NADH-coenzymeQ reductase

Complex II: Succinate-coenzymeQ reductase

Complex III: CoenzymeQ-cytochrome c reductase

Complex IV: Cytochrome c oxidase

An overview of the electron transport chain is as follows:

General, Organic, and Biological Chemistry, Chapter 23, Problem 23.89EP , additional homework tip  4

Redox reactions involve oxidation and reduction reaction occurring simultaneously so that one species is oxidized and the other one is reduced. The species that gain hydrogen or electron is known as reduced form and the species that loss hydrogen or electron is known as oxidized form. The general representation of the redox reaction is,

  A+H++eAH

Here A is oxidized form and AH is reduced form.

Answer to Problem 23.89EP

The change cytb(Fe3+)cytb(Fe2+) represents reduction as there is a gain of an electron in the reaction.

Explanation of Solution

Cytb(Fe3+) is a structural component of the complex III and consists of iron that changes its oxidation state from +3 to +2 in the complex.  Iron in cytb(Fe3+) undergoes reduction and leads to the formation of cytb(Fe2+). The reaction to this change is:

  cytb(Fe3+)+eReductioncytb(Fe2+)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1.57 Draw all reasonable resonance structures for the following cation. Then draw the resonance hybrid.
For the two questions below, draw the mechanism and form the major product.
Indicate similarities and differences between natural, exchanged and pillared clays.

Chapter 23 Solutions

General, Organic, and Biological Chemistry

Ch. 23.3 - Which of the following statements concerning...Ch. 23.4 - Prob. 1QQCh. 23.4 - Prob. 2QQCh. 23.5 - Prob. 1QQCh. 23.5 - Prob. 2QQCh. 23.5 - Prob. 3QQCh. 23.6 - Which of the following occurs in the second stage...Ch. 23.6 - Which of the following stages in the biochemical...Ch. 23.6 - Prob. 3QQCh. 23.7 - Prob. 1QQCh. 23.7 - Prob. 2QQCh. 23.7 - Prob. 3QQCh. 23.7 - How many NADH and FADH2 molecules are produced,...Ch. 23.7 - Which of the following citric acid cycle...Ch. 23.7 - In which of the following listings of citric acid...Ch. 23.8 - Which of the following is a fuel for the electron...Ch. 23.8 - Prob. 2QQCh. 23.8 - What is the substrate that initially interacts...Ch. 23.8 - The number of fixed enzyme sites in the electron...Ch. 23.8 - In which of the following listings of electron...Ch. 23.8 - Prob. 6QQCh. 23.9 - How many of the four enzyme complexes in the...Ch. 23.9 - Prob. 2QQCh. 23.9 - Prob. 3QQCh. 23.10 - Prob. 1QQCh. 23.10 - Prob. 2QQCh. 23.11 - Prob. 1QQCh. 23.11 - Prob. 2QQCh. 23.11 - Prob. 3QQCh. 23.12 - Prob. 1QQCh. 23.12 - Prob. 2QQCh. 23 - Classify anabolism and catabolism as synthetic or...Ch. 23 - Classify anabolism and catabolism as...Ch. 23 - What is a metabolic pathway?Ch. 23 - Prob. 23.4EPCh. 23 - Classify each of the following processes as...Ch. 23 - Classify each of the following processes as...Ch. 23 - Prob. 23.7EPCh. 23 - Prob. 23.8EPCh. 23 - Prob. 23.9EPCh. 23 - Indicate whether each of the following statements...Ch. 23 - Prob. 23.11EPCh. 23 - Prob. 23.12EPCh. 23 - Prob. 23.13EPCh. 23 - Prob. 23.14EPCh. 23 - Specify, by name and by number present, the...Ch. 23 - Prob. 23.16EPCh. 23 - Prob. 23.17EPCh. 23 - Prob. 23.18EPCh. 23 - Prob. 23.19EPCh. 23 - Prob. 23.20EPCh. 23 - Prob. 23.21EPCh. 23 - Prob. 23.22EPCh. 23 - Write a generalized chemical equation, containing...Ch. 23 - Prob. 23.24EPCh. 23 - Prob. 23.25EPCh. 23 - Prob. 23.26EPCh. 23 - Draw each of the following types of block diagrams...Ch. 23 - Prob. 23.28EPCh. 23 - What is the name of the B vitamin present in each...Ch. 23 - Prob. 23.30EPCh. 23 - Prob. 23.31EPCh. 23 - Prob. 23.32EPCh. 23 - Prob. 23.33EPCh. 23 - Prob. 23.34EPCh. 23 - Prob. 23.35EPCh. 23 - Prob. 23.36EPCh. 23 - Prob. 23.37EPCh. 23 - Prob. 23.38EPCh. 23 - Prob. 23.39EPCh. 23 - Prob. 23.40EPCh. 23 - Prob. 23.41EPCh. 23 - Prob. 23.42EPCh. 23 - Prob. 23.43EPCh. 23 - Prob. 23.44EPCh. 23 - Prob. 23.45EPCh. 23 - Prob. 23.46EPCh. 23 - Prob. 23.47EPCh. 23 - Prob. 23.48EPCh. 23 - Prob. 23.49EPCh. 23 - Prob. 23.50EPCh. 23 - Prob. 23.51EPCh. 23 - Prob. 23.52EPCh. 23 - Prob. 23.53EPCh. 23 - Prob. 23.54EPCh. 23 - Prob. 23.55EPCh. 23 - Prob. 23.56EPCh. 23 - Prob. 23.57EPCh. 23 - Prob. 23.58EPCh. 23 - List, by name, the four general stages of the...Ch. 23 - Prob. 23.60EPCh. 23 - Prob. 23.61EPCh. 23 - Prob. 23.62EPCh. 23 - Prob. 23.63EPCh. 23 - Prob. 23.64EPCh. 23 - Prob. 23.65EPCh. 23 - Prob. 23.66EPCh. 23 - Prob. 23.67EPCh. 23 - Prob. 23.68EPCh. 23 - Prob. 23.69EPCh. 23 - Prob. 23.70EPCh. 23 - Prob. 23.71EPCh. 23 - Prob. 23.72EPCh. 23 - Prob. 23.73EPCh. 23 - Prob. 23.74EPCh. 23 - Prob. 23.75EPCh. 23 - Prob. 23.76EPCh. 23 - Prob. 23.77EPCh. 23 - Prob. 23.78EPCh. 23 - Prob. 23.79EPCh. 23 - Prob. 23.80EPCh. 23 - Prob. 23.81EPCh. 23 - Prob. 23.82EPCh. 23 - Prob. 23.83EPCh. 23 - Prob. 23.84EPCh. 23 - Prob. 23.85EPCh. 23 - Prob. 23.86EPCh. 23 - Prob. 23.87EPCh. 23 - Prob. 23.88EPCh. 23 - Indicate whether each of the following changes...Ch. 23 - Prob. 23.90EPCh. 23 - Prob. 23.91EPCh. 23 - Prob. 23.92EPCh. 23 - Which electron carrier shuttles electrons between...Ch. 23 - Prob. 23.94EPCh. 23 - Prob. 23.95EPCh. 23 - Prob. 23.96EPCh. 23 - Prob. 23.97EPCh. 23 - Prob. 23.98EPCh. 23 - Prob. 23.99EPCh. 23 - Prob. 23.100EPCh. 23 - Put the following substances in the correct order...Ch. 23 - Prob. 23.102EPCh. 23 - Prob. 23.103EPCh. 23 - Prob. 23.104EPCh. 23 - Prob. 23.105EPCh. 23 - Prob. 23.106EPCh. 23 - Prob. 23.107EPCh. 23 - Prob. 23.108EPCh. 23 - Prob. 23.109EPCh. 23 - Prob. 23.110EPCh. 23 - How many protons cross the inner mitochondrial...Ch. 23 - How many protons cross the inner mitochondrial...Ch. 23 - Prob. 23.113EPCh. 23 - Prob. 23.114EPCh. 23 - Prob. 23.115EPCh. 23 - Prob. 23.116EPCh. 23 - Prob. 23.117EPCh. 23 - Prob. 23.118EPCh. 23 - Prob. 23.119EPCh. 23 - Prob. 23.120EPCh. 23 - Prob. 23.121EPCh. 23 - Prob. 23.122EPCh. 23 - Prob. 23.123EPCh. 23 - Prob. 23.124EPCh. 23 - Prob. 23.125EPCh. 23 - Prob. 23.126EPCh. 23 - Prob. 23.127EPCh. 23 - Prob. 23.128EPCh. 23 - Indicate whether or not each of the following B...Ch. 23 - Prob. 23.130EPCh. 23 - Prob. 23.131EPCh. 23 - Prob. 23.132EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY