Concept explainers
(a)
Interpretation: To identify the compound among ATP and phosphoenolpyruvate that releases more energy upon hydrolysis.
Concept introduction: High-energy compounds are those compounds that release a large amount of energy upon hydrolysis. These compounds consist of highly strained bonds which are responsible for the release of a high amount of energy. The compounds containing a phosphate group are examples of high energy compound.
Free energy on hydrolysis is considered as a parameter for determining the strain in the bonds. Greater the strain in the bond more will be the negative value of free energy on hydrolysis and vice-versa.
(b)
Interpretation: To identify the compound among creatine phosphate and ADP that releases more energy upon hydrolysis.
Concept introduction: High-energy compounds are those compounds that release a large amount of energy upon hydrolysis. These compounds consist of highly strained bonds which are responsible for the release of a high amount of energy. The compounds containing a phosphate group are examples of high energy compound.
Free energy on hydrolysis is considered as a parameter for determining the strain in the bonds. Greater the strain in the bond more will be the negative value of free energy on hydrolysis and vice-versa.
(c)
Interpretation: To identify the compound among
Concept introduction: High-energy compounds are those compounds that release a large amount of energy upon hydrolysis. These compounds consist of highly strained bonds which are responsible for the release of a high amount of energy. The compounds containing a phosphate group are examples of high energy compound.
Free energy on hydrolysis is considered as a parameter for determining the strain in the bonds. Greater the strain in the bond more will be the negative value of free energy on hydrolysis and vice-versa.
(d)
Interpretation: To identify the compound among AMP and
Concept introduction: High-energy compounds are those compounds that release a large amount of energy upon hydrolysis. These compounds consist of highly strained bonds which are responsible for the release of a high amount of energy. The compounds containing a phosphate group are examples of high energy compound.
Free energy on hydrolysis is considered as a parameter for determining the strain in the bonds. Greater the strain in the bond more will be the negative value of free energy on hydrolysis and vice-versa.
Trending nowThis is a popular solution!
Chapter 23 Solutions
General, Organic, and Biological Chemistry
- Which nutrient provides energy in its most concentrated form?arrow_forwardThe first step of the metabolic process known as glycolysis is the conversion of glucose to glucose- 6-phosphate. This process has a positive value for rG' Glucose + Pi Glucose-6-phosphate + H2O rG' = +13.8 kJ/mol-rxn This reaction is coupled to the hydrolysis of ATP ATP + H2O ADP + Pi rG' = -30.5 kJ/mol-rxn What is the sum of these two equations and the value of rG' for the coupled reaction? Is the coupled reaction product-favored at equilibrium?arrow_forwardWhat are the nonspecific effects of vitamin E, C, and carotenoids?arrow_forward
- Egg yolk contains a lot of lecithin (a phosphoglyceride). After ingesting a hard-boiled egg, would you find an increase in the lecithin level of your blood? Explain.arrow_forwardUsing symbolic formulas such as ADP and PPi, write equations for the hydrolysis of ATP to ADP and the hydrolysis of ATP to AMP.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning