Concept explainers
The window of a large vacuum chamber is fabricated from a material of prescribed spectral characteristics. A collimated beam of radiant energy from a solar simulator is incident on the window and has a flux of
(a) Determine the transmissivity of the window mate- rial to radiation from the solar simulator, which approximates the solar spectral distribution.
(b) Assuming that the window is insulated from its chamber mounting arrangement, what steady-state temperature does the window reach?
(c) Calculate the net radiation transfer per unit area of the window to the vacuum chamber wall, excluding the transmitted simulated solar flux.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Applied Statics and Strength of Materials (6th Edition)
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Introduction to Heat Transfer
Thermodynamics: An Engineering Approach
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
- 1.26 Repeat Problem 1.25 but assume that the surface of the storage vessel has an absorbance (equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen in kilograms per second and pounds per hour, assuming that convection can be neglected. The heat of vaporization of oxygen at –183°C is .arrow_forward11.41 Determine the steady-state temperatures of two radiation shields placed in the evacuated space between two infinite planes at temperatures of 555 K and 278 K. The emissivity of all surfaces is 0.8.arrow_forwardDetermine the rate of radiant heat emission in watts per square meter from a blackbody at (a) 15C, (b) 600C, and (c) 5700C.arrow_forward
- Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 816C and 260C, respectively. Determine the rate of heat transfer by radiation between the plates in W/m2 and the radiative heat transfer coefficient in W/m2K.arrow_forward1.28 The sun has a radius of and approximates a blackbody with a surface temperature of about 5800 K. Calculate the total rate of radiation from the sun and the emitted radiation flux per square meter of surface area.arrow_forward11.31 A large slab of steel 0.1 m thick contains a 0.1 -m-di- ameter circular hole whose axis is normal to the surface. Considering the sides of the hole to be black, specify the rate of radiative heat loss from the hole. The plate is at 811 K, and the surroundings are at 300 K.arrow_forward
- A long wire 0.7 mm in diameter with an emissivity of 0.9 is placed in a large quiescent air space at 270 K. If the wire is at 800 K, calculate the net rate of heat loss. Discuss your assumptions.arrow_forward1.25 A spherical vessel, 0.3 m in diameter, is located in a large room whose walls are at 27°C (see sketch). If the vessel is used to store liquid oxygen at –183°C and both the surface of the storage vessel and the walls of the room are black, calculate the rate of heat transfer by radiation to the liquid oxygen in watts and in Btu/h.arrow_forwardDetermine the total average hemispherical emissivity and the emissive power of a surface that has a spectral hemispherical emissivity of 0.8 at wavelengths less than 1.5m, 0.6 at wavelengths from 1.5to2.5m, and 0.4 at wavelengths longer than 2.5m. The surface temperature is 1111 K.arrow_forward
- A certain body at 20C is displayed on a top of a building during the night. The body sees nothing but the sky which has an effective temperature of 110K. Determine the heat transfer rate from the body to the sky if the body temperature is maintained at 23C, the surface emissivity of the body is equal to 0.92, and none of the radiation going out of the comes backarrow_forwardA horizontal plate is experiencing uniform irradiation on the both upper and lower surfaces. The ambient air temperature surrounding the plate is 290 K with a convection heat transfer coefficient of 30 W/m2·K. Both upper and lower surfaces of the plate have a radiosity of 4000 W/m2, and the plate temperature is maintained uniformly at 390 K. If the plate is not opaque and has an absorptivity of 0.527, determine the irradiation and emissivity of the plate.arrow_forwardGive step-by-step calculation and explanation Consider a person sitting nude on a beach in Florida. On a sunny day, visible radiation energy from the sun is absorbed by the person at a rate of 30 kcal/h or 34.9 W. The air temperature is a warm 30 °C and the individual’s skin temperature is 32 °C. The effective body surface exposed to the sun is 0.9 m². (Assume this same area for sun absorption, radiative transfer, and convective loss. Is this a good assumption?) a. Find the net energy gain or loss from thermal radiation each hour. (Assume thermal radiative gain and loss according to the equation 6.51 in Herman and an emissivity of 1.) -(4). Equalion (6.51) - (40Tin)Eskin Aşkin (Tskin – Troom) dt = (4 x 5.67 x 10¬8 w/m²–K* x (307 K)')€skin Askin (Tskin – Troom). (6.52) b. If there is a 4 m/s breeze, find the energy lost by convection each hour. (Use Eq. 6.61 with eq. 6.63.) 1 Equation he(Tskin – Tair), (6.61) A dt he 10.45 – w + 10w0.5 (6.63) - c. If the individual’s metabolic rate is…arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning