Concept explainers
A wet towel hangs on a clothes line under conditions for which one surface receives solar irradiation of
Determine the temperature
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Applied Fluid Mechanics (7th Edition)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Introduction To Finite Element Analysis And Design
Engineering Mechanics: Dynamics (14th Edition)
Fox and McDonald's Introduction to Fluid Mechanics
- 13. A thin flat plate is hanging on a string such that its top surface is exposed to a solar radiant flux of 800 W/m2. Both its top surface and bottom surface are exposed to a combined convection-radiation environment with combined h = 21.1 W/m²K. What is the temperature of the plate under steady state conditions if the ambient air temperature is 39°C? Express your answer in °C.arrow_forwardi need the answer quicklyarrow_forwardRequired information Consider a person whose exposed surface area is 21 m4, emissivity is 0.5, and surface temperature is 32°C. Given: 0 = 5.67×10-8 W/m2.K4 Determine the rate of heat loss from that person by radiation in a large room having walls at a temperature of 300 K (upto 3 decimal places). You must provide an answer before moving to the next part. The rate of heat loss from the person at 300K is W.arrow_forward
- A thermocouple shielded by a layer of aluminum foil and copper with an emissivity of 0.05 and 0.02 is used to measure the temperature of hot gases flowing in a duct whose walls are maintained at T= 380K. Assuming emissivity of the thermocouple junction is 0.7 and convection heat transfer coefficient to be h= 130 W/m2.C, determine the radiation heat transfer from thermocouple junction to duct wall.arrow_forwardThe car is outdoors in direct sunlight. The outside air temperature is 27 ° C. The temperature inside the car is maintained by air conditioning 22 ° C. What is the temperature of the outside surface of the car roof? The power density of solar radiation is 840 W / m2 and the absorption coefficient of the roof paint for radiation is 0.51. The heat transfer coefficient from the roof surface to the outside air is 11.6 W / (m2K), which also includes heat radiation from the surface to the environment. Radiation from the atmosphere to the car is not taken into account. The total thermal resistance of the car's roof structure is 1.0 m2K / W. The task does not look at any other part of the vehicle but only the roof. If you need an area, make a calculation per 1 m2.arrow_forward20. PLEASE ANSWER ASAParrow_forward
- Consider steady heat transfer between two large parallel plates at constant temperatures T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown below. Assuming the surface to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is a) filled with still air with k = 0.0219 W/m°C, b) free flowing air with h = 7.5 W/m2°C, c) evacuated, d) filled with urethane insulation with k = 0.026 W/m°C, and e) filled with superinsulation that has an apparent thermal conductivity k = 0.00002 W/m°C PLEASE ANSWER LETTER D AND E, THANK YOUarrow_forwardConsider steady heat transfer between two large parallel plates at constant temperatures T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown below. Assuming the surface to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is a) filled with still air with k = 0.0219 W/m°C, b) free flowing air with h = 7.5 W/m2°C, c) evacuated, d) filled with urethane insulation with k = 0.026 W/m°C, and e) filled with superinsulation that has an apparent thermal conductivity k = 0.00002 W/m°Carrow_forwardplease answer ASAP 2 hours leftarrow_forward
- The amount of radiation received per unit time by a person working near a radioactive source, commonly called the dose rate, is measured in rem hr-1. The safety regulations forbid dose rates in excess of 7.5 × 10-4 rem hr-1. The γ dose rate from the 4219K source is found to be 3 × 10-3 rem hr-1 at a distance of 1 m. What is the minimum distance from this source at which itis safe to work? After how long will it be safe to work at a distance of 1 m from the source?arrow_forward1. A 1000-W iron is left on the iron board with its base exposed to the air at 20°C. The convection heat transfer coefficient between the base surface and the surrounding air is 35 W/m². °C. If the base has an emissivity of 0.6 and a surface area of 0.02 m², determine the temperature of the base of the iron. 2. The inner and outer surfaces of a 5-m x 6-m brick wall of thickness 30 cm and thermal conductivity 0.69 W/m °C are maintained at temperatures of 20°C and 5°C, respectively. Determine the rate of heat transfer through the wall, in W.arrow_forwardThe interior surface of a 25 cm thick wall has a temperature of 27 \deg C as shown in the figure. The outer surface is exposed to a solar radiation of 150 W/m^2 and exchanges heat by radiation and convection with the surroundings and the air that are at the same temperature of 40 \deg C. The coefficient of heat transfer by convection is 8 W/m^2* K, consider both the absorptivity (\alpha ) and emissivity (\epsi equal to 0.8. Assuming transfer of 1D heat and at steady state, determine the surface temperature outside and the heat flow by conduction in the wall in three conditions different: a) If the wall is made of brick (k=0.72 W/m*K) b) If the wall is made of wood (k=0.17 W/m*K) c) If the wall is made of rigid foam (polyurethane) (k=0.026 W/m*KMake a diagram of the corresponding thermal resistance circuit and a diagram of the variation of temperatures from the interior wall to the air abroad.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning