Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.49P
An opaque surface with the prescribed spectral, hemi- spherical reflectivity distribution is subjected to the spectral irradiation shown
(a) Sketch the spectral, hemispherical absorptivity distribution.
(b) Determine the total irradiation on the surface.
(c) Determine the radiant flux that is absorbed by the surface.
(d) What is the total, hemispherical absorptivity of this surface?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An opaque surface with the prescribed spectral, hemispherical reflectivity distribution is subjected to the spectral irradiation shown.
Assume that p₁ = 0.5 and G₁ = 650 W/m²-μm.
G₁
1.0
P₁
0 5
10
15
λ(um)
(a) Determine the total irradiation on the surface, in W/m².
G =
W/m²
(b) Determine the radiant flux that is absorbed by the surface, in W/m².
Gabs = i
W/m²
(c) What is the total, hemispherical absorptivity of this surface?
α = i
G₂(W/m².μm)
5
10
15
20
λ (um)
An opaque surface with the prescribed spectral, hemispherical reflectivity distribution is subjected to the spectral irradiation shown.
Assume that p₁ = 0.5 and G₁ = 700 W/m².um.
1.0
P₁
5
10 15
λ (um)
(a) Determine the total irradiation on the surface, in W/m².
G = i
W/m²
G₂ (W/m².um)
(b) Determine the radiant flux that is absorbed by the surface, in W/m².
W/m²
Gabs
i
(c) What is the total, hemispherical absorptivity of this surface?
α = i
G₁
10
5
10 15 20
λ (um)
An opaque surface with the prescribed spectral, hemispherical reflectivity distribution is subject
to the spectral irradiation shown. Find:
1.0
600
0.5
0
05
10
15
λ (μm)
G₂(W/m²•μm)
300
0
0
5
10
15 20
20
λ (μm)
(1) Find the spectral absorptivity distribution (αλ).
(2) Determine the total irradiation G on the surface
(3) Determine the radiant flux that is absorbed by the surface.
(4) The total absorptivity a.
Chapter 12 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 12 - Consider an opaque horizontal plate that is well...Ch. 12 - A horizontal, opaque surface at a steady-state...Ch. 12 - The top surface of an L=5mmthick anodized aluminum...Ch. 12 - A horizontal semitransparent plate is uniformly...Ch. 12 - What is the irradiation at surfaces A2 , A3 , and...Ch. 12 - According to its directional distribution, solar...Ch. 12 - Solar radiation incident on the earth’s surface...Ch. 12 - On an overcast day the directional distribution of...Ch. 12 - During radiant heat treatment of a thin-film...Ch. 12 - A small radiant heat source of area A1=2x104m2...
Ch. 12 - Determine the fraction of the total, hemispherical...Ch. 12 - The spectral distribution of the radiation emitted...Ch. 12 - Consider a 5-mm-square, diffuse surface A0 having...Ch. 12 - Assuming blackbody behavior, determine the...Ch. 12 - The dark surface of a ceramic stove top may be...Ch. 12 - The energy flux associated with solar radiation...Ch. 12 - A small flat plate is positioned just beyond the...Ch. 12 - A spherical aluminum shell of inside diameter D=2m...Ch. 12 - The extremely high temperatures needed to trigger...Ch. 12 - An enclosure has an inside area of 100m2 , and its...Ch. 12 - Assuming the earth’s surface is black, estimate...Ch. 12 - A proposed method for generating electricity from...Ch. 12 - Approximations to Planck’s law for the spectral...Ch. 12 - Estimate the wavelength corresponding to maximum...Ch. 12 - A furnace with a long, isothermal, graphite tube...Ch. 12 - Isothermal furnaces with small apertures...Ch. 12 - For materials A and B, whose spectral...Ch. 12 - A small metal object, initially at Ti=1000K ,is...Ch. 12 - The directional total emissivity of nonmetallic...Ch. 12 - Consider the metallic surface of Example 12.7....Ch. 12 - The spectral, directional emissivity of a diffuse...Ch. 12 - Consider the directionally selective surface...Ch. 12 - A sphere is suspended in air in a dark room and...Ch. 12 - Estimate the total, hemispherical emissivity for...Ch. 12 - Sheet steel emerging from the hot roll section of...Ch. 12 - A large body of nonluminous gas at a temperature...Ch. 12 - An opaque surface with the prescribed spectral,...Ch. 12 - The spectral reflectivity distribution for white...Ch. 12 - A diffuse, opaque surface at 700 K has spectral...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - Consider an opaque, diffuse surface for which the...Ch. 12 - Radiation leaves a furnace of inside surface...Ch. 12 - The spectral transmissivity of a 1-mm-thick layer...Ch. 12 - The spectral transmissivity of plain and tinted...Ch. 12 - Referring to the distribution of the spectral...Ch. 12 - The spectral absorptivity and spectral...Ch. 12 - Consider a large furnace with opaque, diffuse,...Ch. 12 - Four diffuse surfaces having the spectral...Ch. 12 - The spectral transmissivity of a 50m -thick...Ch. 12 - An opaque, horizontal plate has a thickness of...Ch. 12 - Two small surfaces, A and B, are placed inside an...Ch. 12 - Consider an opaque, diffuse surface whose spectral...Ch. 12 - The 50-mm peephole of a large furnace operating at...Ch. 12 - The window of a large vacuum chamber is fabricated...Ch. 12 - A thermograph is a device responding to the...Ch. 12 - A radiation thermometer is a radiometer calibrated...Ch. 12 - A radiation detector has an aperture of area...Ch. 12 - A small anodized aluminum block at 35C is heated...Ch. 12 - Consider the diffuse, gray opaque disk A1 , which...Ch. 12 - A two-color pyrometer is a device that is used to...Ch. 12 - An apparatus commonly used for measuring the...Ch. 12 - A procedure for measuring the thermal conductivity...Ch. 12 - One scheme for extending the operation of gas...Ch. 12 - The equipment for heating a wafer during a...Ch. 12 - Neglecting the effects of radiation absorption,...Ch. 12 - Consider the evacuated tube solar collector...Ch. 12 - Solar flux of 900W/m2 is incident on the top side...Ch. 12 - Consider an opaque, gray surface whose directional...Ch. 12 - A contractor must select a roof covering material...Ch. 12 - It is not uncommon for the night sky temperature...Ch. 12 - Plant leaves possess small channels that connect...Ch. 12 - In the central receiver concept of solar energy...Ch. 12 - Radiation from the atmosphere or sky can be...Ch. 12 - A thin sheet of glass is used on the roof of a...Ch. 12 - Growers use giant fans to prevent grapes from...Ch. 12 - A circular metal disk having a diameter of 0.4 m...Ch. 12 - The neighborhood cat likes to sleep on the roof of...Ch. 12 - The exposed surface of a power amplifier for an...Ch. 12 - Consider a thin opaque, horizontal plate with an...Ch. 12 - The oxidized-aluminum wing of an aircraft has a...Ch. 12 - Two plates, one with a black painted surface and...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A spherical satellite in near-earth orbit is...Ch. 12 - An annular fin of thickness t is used as a...Ch. 12 - The directional absorptivity of a gray surface...Ch. 12 - Two special coatings are available for application...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A spherical capsule of 3-m radius is fired from a...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A solar panel mounted on a spacecraft has an area...Ch. 12 - It is known that on clear nights a thin layer of...Ch. 12 - A shallow layer of water is exposed to the natural...Ch. 12 - A roof-cooling system, which operates by...Ch. 12 - A wet towel hangs on a clothes line under...Ch. 12 - Our students perform a laboratory experiment to...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Steady state conduction rate to the warm compressor to the net power produces theoretically by thermodynamic ba...
Introduction to Heat Transfer
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics Fundamentals And Applications
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics for Engineers: Dynamics
5.1 through 5.9
Locate the centroid of the plane area shown.
Fig. P5.1
Vector Mechanics for Engineers: Statics and Dynamics
For the beam loading of Figure P334, draw the complete shearing force and bending moment diagrams, and determin...
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Compute the hydraulic radius for a circular drain pipe running half full if its inside diameter is 300 mm.
Applied Fluid Mechanics (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A tungsten filament is heated to 2700 K. At what wavelength is the maximum amount of radiation emitted? What fraction of the total energy is in the visible range (0.4to0.75m)? Assume that the filament radiates as a graybody.arrow_forward11.68 Two infinitely large, black, plane surfaces are 0.3 m apart, and the space between them is filled by an isothermal gas mixture at 811 K and atmospheric pressure. The gas mixture consists of by volume. If one of the surfaces is maintained at 278 K and the other at 1390 K, calculate (a) the effective emissivity of the gas at its temperature, (b) the effective absorptivity of the gas to radiation from the 1390 K surface, (c) the effective absorptivity of the gas to radiation from the 278 K surface, and (d) the net rate of heat transfer to the gas per square meter of surface area.arrow_forwardDetermine the total average hemispherical emissivity and the emissive power of a surface that has a spectral hemispherical emissivity of 0.8 at wavelengths less than 1.5m, 0.6 at wavelengths from 1.5to2.5m, and 0.4 at wavelengths longer than 2.5m. The surface temperature is 1111 K.arrow_forward
- Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 816C and 260C, respectively. Determine the rate of heat transfer by radiation between the plates in W/m2 and the radiative heat transfer coefficient in W/m2K.arrow_forwardAn opaque surface has the spectral, hemispherical reflectivity distribution as shown below. The surface receives the spectral irradiation shown below. A. Determine the total irradiation on the surfaceB. Determine the radiant flux that is absorbed by the surfacearrow_forwardAn engineered passive radiative cooler coating is placed under the Sun. Provided the following simplified spectral emissivity/absorptivity plot below, calculate the total diffuse emissivity and absorptivity if its uniform surface temperature is a Ts=20°C. Assume the Sun's irradiation onk Earth is Gsun=1380 W/m2 and its blackbody temperature is Tsun= 5800K. Ignore the radiation from the atmosphere (surroundings).arrow_forward
- as fast as.arrow_forwardA horizontal opaque flat plate is well insulated on the edges and the lower surface. The top surface has an area of 5 m2, and it experiences uniform irradiation at a rate of 5000 W. The plate absorbs 4000 W of the irradiation, and the surface is losing heat at a rate of 500 W by convection. If the plate maintains a uniform temperature of 350 K, determine the absorptivity, reflectivity, and emissivity of the plate.arrow_forwardA gray surface has an emissivity at a temperature of 550 K source. If the surface is opaque, (a) Calculate its reflectivity for black body radiation coming from a 550 K source. (b) A small 25 mm square hole is made in the thin-walled door of a furnace whose inside walls are at 920 K. if the emissivity of the walls is 0.72, calculate the rate at which radiant energy escapes from the furnace through the hole to the room.arrow_forward
- The last portion asks you for "net radiant heat flux to the surface", meaning that positive net radiative heat flux means in and negative net radiative heat flux means out. This is opposite the typical sign convention - be aware of thisarrow_forwardSpectral hemispherical reflectivity distribution of an opaque surface is shown below. Surface is subjected to the spectral iradiation as shown. 1.0 400 a 0.4 200 10 15 0. 5 10 15 20 2 (um) 2 (um) Calculate the total irradiation on the surface in W/m2 Calculate the irradiation absorbed by the surface in W/m2 5750 6250 7500 3750 4250 5000 3250 1850 2000 1750 1600 1200 1400arrow_forwardA proposed method for generating electricity from solar irradiation is to concentrate the irradiation into a cavity that is placed within a large container of a salt with a high melting temperature. If all heat losses are neglected, part of the solar irradiation entering the cavity is used to melt the salt while the remainder is used to power a Rankine cycle. (The salt is melted during the day and is resolidified at night in order to generate electricity around the clock.) 9R = Est-3.45 MW i Salt Tsalt = 1000°C Mirror MW qR Consider conditions for which the solar power entering the cavity is asol = 7.10 MW and the time rate of change of energy stored in the salt is Est = 3.45 MW. For a cavity opening of diameter D, = 1 m, determine the rate of heat transfer to the Rankine cycle, qr, in MW. The temperature of the salt is maintained at its melting point, Tsalt = Tm= 1000°C. Neglect heat loss by convection and irradiation from the surroundings. Sun Heliostatsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license