Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.115P
It is not uncommon for the night sky temperature in desert regions to drop to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On a summer day in Phoenix, Arizona, the inside room temperature is maintained at 68° F while the outdoor air temperature is a sizzling 110° F . What is the outdoor– indoor temperature difference in (a) degrees Fahrenheit, (b) degrees Rankine, (c) degrees Celsius, and (d) kelvin? Is one degree temperature difference in Celsius equal to one temperature difference in kelvin, and is one degree temperature difference in Fahrenheit equal to one degree temperature difference in Rankine? If so, why?
It takes 15 minutes to warm up from 10 C to 20 C in a room whose temperature is 30 C. Assuming Newton's law of cooling, how long would it takes to warm up from 10 C to 25 C?
Determine the heat extracted in cal/hr of a refrigerating plant which produces 11025lbsof ice in every two days at 23 ˚F from the raw water at 65 ˚F. If miscellaneous losses is¾% of the freezing and chilling load.
Chapter 12 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 12 - Consider an opaque horizontal plate that is well...Ch. 12 - A horizontal, opaque surface at a steady-state...Ch. 12 - The top surface of an L=5mmthick anodized aluminum...Ch. 12 - A horizontal semitransparent plate is uniformly...Ch. 12 - What is the irradiation at surfaces A2 , A3 , and...Ch. 12 - According to its directional distribution, solar...Ch. 12 - Solar radiation incident on the earth’s surface...Ch. 12 - On an overcast day the directional distribution of...Ch. 12 - During radiant heat treatment of a thin-film...Ch. 12 - A small radiant heat source of area A1=2x104m2...
Ch. 12 - Determine the fraction of the total, hemispherical...Ch. 12 - The spectral distribution of the radiation emitted...Ch. 12 - Consider a 5-mm-square, diffuse surface A0 having...Ch. 12 - Assuming blackbody behavior, determine the...Ch. 12 - The dark surface of a ceramic stove top may be...Ch. 12 - The energy flux associated with solar radiation...Ch. 12 - A small flat plate is positioned just beyond the...Ch. 12 - A spherical aluminum shell of inside diameter D=2m...Ch. 12 - The extremely high temperatures needed to trigger...Ch. 12 - An enclosure has an inside area of 100m2 , and its...Ch. 12 - Assuming the earth’s surface is black, estimate...Ch. 12 - A proposed method for generating electricity from...Ch. 12 - Approximations to Planck’s law for the spectral...Ch. 12 - Estimate the wavelength corresponding to maximum...Ch. 12 - A furnace with a long, isothermal, graphite tube...Ch. 12 - Isothermal furnaces with small apertures...Ch. 12 - For materials A and B, whose spectral...Ch. 12 - A small metal object, initially at Ti=1000K ,is...Ch. 12 - The directional total emissivity of nonmetallic...Ch. 12 - Consider the metallic surface of Example 12.7....Ch. 12 - The spectral, directional emissivity of a diffuse...Ch. 12 - Consider the directionally selective surface...Ch. 12 - A sphere is suspended in air in a dark room and...Ch. 12 - Estimate the total, hemispherical emissivity for...Ch. 12 - Sheet steel emerging from the hot roll section of...Ch. 12 - A large body of nonluminous gas at a temperature...Ch. 12 - An opaque surface with the prescribed spectral,...Ch. 12 - The spectral reflectivity distribution for white...Ch. 12 - A diffuse, opaque surface at 700 K has spectral...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - Consider an opaque, diffuse surface for which the...Ch. 12 - Radiation leaves a furnace of inside surface...Ch. 12 - The spectral transmissivity of a 1-mm-thick layer...Ch. 12 - The spectral transmissivity of plain and tinted...Ch. 12 - Referring to the distribution of the spectral...Ch. 12 - The spectral absorptivity and spectral...Ch. 12 - Consider a large furnace with opaque, diffuse,...Ch. 12 - Four diffuse surfaces having the spectral...Ch. 12 - The spectral transmissivity of a 50m -thick...Ch. 12 - An opaque, horizontal plate has a thickness of...Ch. 12 - Two small surfaces, A and B, are placed inside an...Ch. 12 - Consider an opaque, diffuse surface whose spectral...Ch. 12 - The 50-mm peephole of a large furnace operating at...Ch. 12 - The window of a large vacuum chamber is fabricated...Ch. 12 - A thermograph is a device responding to the...Ch. 12 - A radiation thermometer is a radiometer calibrated...Ch. 12 - A radiation detector has an aperture of area...Ch. 12 - A small anodized aluminum block at 35C is heated...Ch. 12 - Consider the diffuse, gray opaque disk A1 , which...Ch. 12 - A two-color pyrometer is a device that is used to...Ch. 12 - An apparatus commonly used for measuring the...Ch. 12 - A procedure for measuring the thermal conductivity...Ch. 12 - One scheme for extending the operation of gas...Ch. 12 - The equipment for heating a wafer during a...Ch. 12 - Neglecting the effects of radiation absorption,...Ch. 12 - Consider the evacuated tube solar collector...Ch. 12 - Solar flux of 900W/m2 is incident on the top side...Ch. 12 - Consider an opaque, gray surface whose directional...Ch. 12 - A contractor must select a roof covering material...Ch. 12 - It is not uncommon for the night sky temperature...Ch. 12 - Plant leaves possess small channels that connect...Ch. 12 - In the central receiver concept of solar energy...Ch. 12 - Radiation from the atmosphere or sky can be...Ch. 12 - A thin sheet of glass is used on the roof of a...Ch. 12 - Growers use giant fans to prevent grapes from...Ch. 12 - A circular metal disk having a diameter of 0.4 m...Ch. 12 - The neighborhood cat likes to sleep on the roof of...Ch. 12 - The exposed surface of a power amplifier for an...Ch. 12 - Consider a thin opaque, horizontal plate with an...Ch. 12 - The oxidized-aluminum wing of an aircraft has a...Ch. 12 - Two plates, one with a black painted surface and...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A spherical satellite in near-earth orbit is...Ch. 12 - An annular fin of thickness t is used as a...Ch. 12 - The directional absorptivity of a gray surface...Ch. 12 - Two special coatings are available for application...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A spherical capsule of 3-m radius is fired from a...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A solar panel mounted on a spacecraft has an area...Ch. 12 - It is known that on clear nights a thin layer of...Ch. 12 - A shallow layer of water is exposed to the natural...Ch. 12 - A roof-cooling system, which operates by...Ch. 12 - A wet towel hangs on a clothes line under...Ch. 12 - Our students perform a laboratory experiment to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- There is 2 kilograms of gas with a molecular weight of 28, located in a rigid tank which is closed and equipped with an electrical resistor. A fixed resistance of 10 amperes and a voltage of 12 volts are applied to this system for 10 minutes. When thermal equilibrium is reached, it is seen that the temperature of the gas rises by 40.3°C. The heat transfer to the environment is estimated at 20 W. Assuming ideal gas behavior, in this temperature range the gas Find the average value of its specific heat Cp. (kj/kg K)arrow_forward105°C, determine the temperature of the outer surface of the bottom of the pan. 19. The inner and outer glasses of a 2-m x 2-m double pane window are at 18°C and 6°C, respectively. If the 1-cm space between the two glasses is filled with still air, determine the rate of heat transfer through the window, in kW.arrow_forwardThe outside surface of a satellite with an emissivity of 0.90 receives a solar radiant flux of 1260 W/m2, while the inside surface is perfectly insulated (assumed). At steady state conditions, what is the temperature of the outside surface of the satellite? Express your answer in °C.arrow_forward
- A gas having Cy = 0.7452 kJ/kg-K, undergoes a process in which AH = 424 kJ/kg and AU = 320 kJ/kg. Determine the specific heat ratio, k.arrow_forwardAir is contained in a piston cylinder arrangement as shown in Fig. The piston can be assumed to be massless, frictionless, and perfectly insulated. 10 kg of dry ice (solid CO2) is placed on top of the piston. The initial conditions for air inside the cylinder are Pı=121 kPa, Tı= 300 K. Dry ice sublimates gradually, and its mass reduces to 5 kg. Ambient air is always at room temperature (27°C) and atmospheric pressure. (Given: R=287 J/kg ·K, g = 9.8 m/s², Cp/Cy for air = 1.4; Neglect all heat transfer to the dry ice block.) a) Assuming the cylinder to be perfectly insulated, calculate the specific work done for the process. b) Assuming the cylinder to be perfectly conducting, what is the heat required per unit mass of air to complete the process? c) Plot the processes described in (a) and (b) together on a P- v diagram. From this plot, which process appears to have more work? Explain.arrow_forwardThe volume and temperature of air (assumed to be an ideal gas) in a closed vessel is 2.87 m3 and 300 K, respectively. The gauge pressure indicated by a manometer fitted to the wall of the vessel is 0.5 bar. If the gas constant of air is R= 287 J/kgK and the atmospheric pressure is 1 bar, the mass of air (in kg) in the vessel isarrow_forward
- Newton's Law of Cooling says that the rate at which a body cools is proportional to the differnce C in temperature between the body and the environment around it. The temperature f(t) of the body at time t in hours after being introduced into an environment having constant temperature T0 is f(t)=T0+Ce-kt, where C and k are constants.A pot of coffee with initial tempature of 100°C is set down in a room with a tempature of 20°C.The coffee cools to 60°C after 1 hour. A)Write an equation to model the data. B)Find the tempature after half an hour. C)How long will it take for the coffee to cool at 50°Carrow_forwardA composite plane wall consists of a 3-in.-thick layer of insulation (k = 0.029 Btu/h · ft · °R) and a 0.75-in.-thick layer of siding (kg = 0.058 Btu/h · ft · °R). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 8°F. Determine at steady state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h-ft? of surface area.arrow_forwardA piston-cylinder device contains 6 kg of air at 440 kPa and 32°C. During an isothermal expansion process, 16 kJ of work is done by the system. The heat transfer during this process is---- Select one: О а. 24 K] O b. 3.5 KJ О с. 18 к] O d. 16 KJarrow_forward
- 4arrow_forwardAn air-conditioned classroom in Texas is maintained at 72ºF in the summer. The students attend classes in shorts, sandals, and tee shirts and are quite comfortable. In the same classroom during the winter, the same students wear wool slacks, long-sleeve shirts, and sweaters, and are equally comfortable with the room temperature maintained at 75ºF. Assuming that humidity is not a factor, explain this apparent anomaly in "temperature comfort."arrow_forwardPravinbhaiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license