For the following exercises, use a CAS to evaluate the given line integrals. 79. [T] Evaluate line integral ∫ y x e y d s where, γ is the arc of curve x = e y from (1, 0) to (e, 1).
For the following exercises, use a CAS to evaluate the given line integrals. 79. [T] Evaluate line integral ∫ y x e y d s where, γ is the arc of curve x = e y from (1, 0) to (e, 1).
For the following exercises, use a CAS to evaluate the given line integrals.
79. [T] Evaluate line integral
∫
y
x
e
y
d
s
where,
γ
is the arc of curve
x
=
e
y
from (1, 0) to (e, 1).
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
38
Below triangle is isosceles.
Find the value of x.
70°
60°
x
20°
W
Problem 11 (a) A tank is discharging water through an orifice at a depth of T
meter below the surface of the water whose area is A m². The
following are the values of a for the corresponding values of A:
A 1.257 1.390
x 1.50 1.65
1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650
1.80 1.95 2.10 2.25 2.40 2.55 2.70
2.85
Using the formula
-3.0
(0.018)T =
dx.
calculate T, the time in seconds for the level of the water to drop
from 3.0 m to 1.5 m above the orifice.
(b) The velocity of a train which starts from rest is given by the fol-
lowing table, the time being reckoned in minutes from the start
and the speed in km/hour:
| † (minutes) |2|4 6 8 10 12
14 16 18 20
v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0
Estimate approximately the total distance ran in 20 minutes.
-
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
p-1
2
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
23
32
how come?
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
The set T is the subset of these residues exceeding
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY