Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 24RQ
Describe the various aging responses (maximum attainable strength and time for attaining that strength) that can occur over the range of possible aging temperatures.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
ENGINEERING MATERIALS
Three separate heat treatments were applied to Ç1040 steel as quenching, quenching + tempering and softening annealing. Can you explain the modulus of elasticity, yield strength, toughness and resilience in a cause and effect relationship by showing the bottom tensile curves in each case of the samples on the same diagram?
What is a consequence of strain hardening?
Chapter 5 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 5 - What is heat treatment?Ch. 5 - What types of properties can be altered through...Ch. 5 - Why should people performing hot forming or...Ch. 5 - What is the broad goal of the processing heat...Ch. 5 - Why might equilibrium phase diagrams be useful...Ch. 5 - What are the A1, A3, and Acm lines?Ch. 5 - What are some possible objectives of annealing...Ch. 5 - Why might it be important to include a preceding...Ch. 5 - Describe the cooling conditions of a full anneal.Ch. 5 - Why are the hypereutectoid steels not...
Ch. 5 - Although full anneals often produce the softest...Ch. 5 - What is the major process difference between full...Ch. 5 - Although normalizing is less expensive than a full...Ch. 5 - Prob. 14RQCh. 5 - What types of steel would be candidates for a...Ch. 5 - How might steel composition influence the...Ch. 5 - Other than increasing strength, for what three...Ch. 5 - What are the six major mechanisms that can be used...Ch. 5 - Prob. 19RQCh. 5 - What is required for a metal to be a candidate for...Ch. 5 - What are the three steps in an age�hardening...Ch. 5 - What is the difference between a coherent...Ch. 5 - What is overaging? Why does strength decrease?Ch. 5 - Describe the various aging responses (maximum...Ch. 5 - What is the difference between natural and...Ch. 5 - Why might naturally aging aluminum rivets be...Ch. 5 - Why is it important not to expose precipitation...Ch. 5 - Why is it more difficult to understand the...Ch. 5 - What types of heating and cooling conditions are...Ch. 5 - What are the stable equilibrium phases for steels...Ch. 5 - What are some nonequilibrium structures that...Ch. 5 - Prob. 32RQCh. 5 - What is the major factor that influences the...Ch. 5 - For a given steel, describe the relative strengths...Ch. 5 - Most structure changes proceed to completion over...Ch. 5 - What is retained austenite, and why is it an...Ch. 5 - What types of steels are more prone to retained...Ch. 5 - Why are martensitic structures usually tempered...Ch. 5 - Why does tempering offer a spectrum of possible...Ch. 5 - In what ways is the quench�and�temper heat...Ch. 5 - What is a C�C�T diagram? Why is it more useful...Ch. 5 - What is the critical cooling rate, and how is it...Ch. 5 - What two features combine to determine the...Ch. 5 - What conditions are used to standardize the quench...Ch. 5 - How do the various locations of a Jominy test...Ch. 5 - How do the data collected from a Jominy test...Ch. 5 - What is the assumption that allows the data from a...Ch. 5 - What is hardenability? How is it different from...Ch. 5 - What capabilities are provided by...Ch. 5 - When selecting a steel for an application, what...Ch. 5 - What are the three stages of liquid quenching?Ch. 5 - What are some of the major advantages and...Ch. 5 - Why does brine provide faster cooling than water?Ch. 5 - Why is an oil quench less likely to produce quench...Ch. 5 - What are some of the attractive qualities of a...Ch. 5 - Prob. 56RQCh. 5 - Prob. 57RQCh. 5 - Prob. 58RQCh. 5 - Prob. 59RQCh. 5 - How might the thermally induced residual stresses...Ch. 5 - Prob. 61RQCh. 5 - Prob. 62RQCh. 5 - Prob. 63RQCh. 5 - What is thermomechanical processing?Ch. 5 - Prob. 65RQCh. 5 - Prob. 66RQCh. 5 - Prob. 67RQCh. 5 - Prob. 68RQCh. 5 - Prob. 69RQCh. 5 - Prob. 70RQCh. 5 - Prob. 71RQCh. 5 - Prob. 72RQCh. 5 - Prob. 73RQCh. 5 - Why does a carburized part have to be further...Ch. 5 - Prob. 75RQCh. 5 - Prob. 76RQCh. 5 - Prob. 77RQCh. 5 - Describe the distinguishing features of a box...Ch. 5 - What are some possible functions of artificial...Ch. 5 - Prob. 80RQCh. 5 - Prob. 81RQCh. 5 - Prob. 82RQCh. 5 - What are some current goals of the heat treatment...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - What problems might be expected if the material on...Ch. 5 - Describe some heat treatment processes or...Ch. 5 - Prob. 1.3CSCh. 5 - Prob. 1.4CSCh. 5 - Prob. 1.5CSCh. 5 - Prob. 1.6CSCh. 5 - Prob. 1.7CSCh. 5 - Prob. 1.8CSCh. 5 - Prob. 2.1CSCh. 5 - Prob. 2.2CSCh. 5 - How would you alter the procedures or policies of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need the solution of this question please please please quickly Thanksarrow_forwardSelect 3 principal driving forces for the development of mechanical properties during heat treatment. Group of answer choices: Microstructure Changes Formation of Surface Oxide Cooling Rate Ambient Temperature Heating Rate Diffusion Rate Heating Methodarrow_forwardLook up the standard aluminum alloy heat treatment temper designations. Use the designations to justify the yield strength behavior of the following aluminum alloys listed in Table 1.2: 2024-T3 vs. 2024-T6 and 7075-T6 vs. 7075-T73.arrow_forward
- Comparison of treatment processes (annealing, normalizing, hardening and tempering) according to heating and cooling, microstructure and mechanical propertiesarrow_forward1. Using the TTT diagram for Eutectoid Steel, specify the constituents and their approximate percentages of a small specimen subjected to the following time-temperature treatments. All begin with a completely Austenized specimen: - Rapidly cool to 650°C, hold for 100 seconds, then quench to room temperature. Rapidly cool to 500°C, hold for 100 seconds, then quench to room temperature. - Rapidly cool to 350°C, hold for 100 seconds, then quench to room temperature. - Rapidly cool to 100°C, hold for 100 seconds, then quench to room temperature. - Rapidly cool to 500°C, hold for 4 seconds, quench to 300°C, hold for 200 seconds, then quench to room temperature.arrow_forwardDifferentiate annealing and tempering heat treatment processes.arrow_forward
- 1. Why does the tensile strength of steel, which contains only austenite at room temperature, differ fromsteel that shows only pearlite in its microstructure? Give two important reasons for the difference. 2. What general prerequ_isites exist for the formation of martensite in steel? 3. What is an isothermal transformation of a material in the solid state condition? 4. Draw a typical isothermal transformation diagram for plain .carbon eutectoid steel and indicate thevarious decomposition products expected by simple diagrammatic drawing.arrow_forwardUsing the isothermal transformation diagram for a 1.13 wt% C steel alloy, determine the final microstructure (in terms of the microconstituents present) of a small specimen that has undergone the following time-temperature treatments. In each case suppose that the sample begins at 920 ° C and that it has been held at this temperature for the timesufficient to achieve a complete and homogeneous austenitic structure. (a) Quickly cool to 250 ° C, hold for 103 s, then cool to room temperature.(b) Quickly cool to 400 ° C, hold for 500 s, then cool to room temperature.(c) Quick cool to 700 ° C, hold for 105 s, then cool to room temperature.(d) Rapidly cool to 650 ° C, hold for 3 s and rapidly cool to 400 ° C, hold that temperature for 25 s and cool to room temperature.(e) Quick cool to 650 ° C, hold for 7 s, then cool to room temperature.arrow_forwardeffect of the cooling rate on the microstructure and hardness of a materialarrow_forward
- Which of the following may occur during an annealing heat treatment? (Please choose all that apply) Stresses may be relieved Ductility may decrease Toughness may increase Strength may increasearrow_forwardQuestion 1 You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt- chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows... A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some magnitude F produces a 7x10³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded). Q1F: How would the "new alloy" material (with different properties as shown below) behave, assuming it has the same initial diameter (10mm) and applied load (F) in the tensile test? That is, would it experience plastic deformation (yield) under the conditions of this problem?arrow_forward3. What effects do the alloying additions have on the microstructure and mechanical properties of air-cooled (normalized) steel specimens? 1 4. What effects do the alloying additions have on the microstructure and mechanical properties of furnace-cooled (annealed) steel specimens?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY